Skip to main content
Book cover

Lectins pp 361–369Cite as

Potential Usage for In Vivo Lectin Screening in Live Animals Utilizing Cell Surface Mimetic Glyco-nanoparticles, Phosphorylcholine-Coated Quantum Dots (PC-QDs)

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1200))

Abstract

Utilizing glycosylated derivatives as a tag, we are able to explore novel counter-receptor of endogenous lectins or lectin-like molecules in vivo. We have established the standardized methodology including preparation of glycosylated derivatives and construction of a platform for tracing the molecules in vivo at first. Combined use of an aminooxy-terminated thiol derivative and a phosphorylcholine (PC) derivative provides quantum dots (QDs) with novel functions for the chemical ligation of ketone-functionalized compounds and the prevention of nonspecific protein adsorption concurrently. In order to track the derivatives in vivo, near-infrared (NIR) fluorescence imaging of QDs displaying various simple sugars (glyco-PC-QDs) after administration into the tail vein of the mouse can be performed. It has revealed that distinct long-term delocalization over 2 h can be observed depending on the species of glycans ligated to PC-QDs at least in the liver. Until today we have performed live animal imaging utilizing various kinds of sialyl glyco-PC-QDs. They are still retained stably in whole body after 2 h while they showed significantly different in vivo dynamics in the tissue distribution, suggesting that structure/sequence of the neighboring sugar residues in the individual sialyl oligosaccharides might influence the final organ-specific distribution, which should be equivalent to the distribution of sialic acid-recognizing lectins. Here we describe a standardized protocol using ligand-displayed PC-QDs for live cell/animal imaging by versatile NIR fluorescence photometry without influence of size-dependent accumulation/excretion pathway for nanoparticles (e.g., viruses) > 10 nm in hydrodynamic diameter by the liver.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Laughlin ST, Baskin JM, Amacher SL, Bertozzi CR (2008) In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320:664–667

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Andre S, Kozar T, Kojima S, Unverzagt C, Gabius H-J (2009) From structural to functional glycomics: core substitutions as molecular switches for shape and lectin affinity of N-glycans. Biol Chem 390:557–565

    Article  PubMed  CAS  Google Scholar 

  3. van Kasteren SI, Campbell SJ, Serres S, Anthony DC, Sibson NR, Davis BG (2009) Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease. Proc Natl Acad Sci U S A 106:18–23

    Article  PubMed  PubMed Central  Google Scholar 

  4. Marradi M, Alcantara D, de la Fuente JM, Garcia-Martin ML, Cerdan S, Penades S (2009) Paramagnetic Gd-based gold glyconanoparticles as probes for MRI: tuning relaxivities with sugars. Chem Commun 26:3922–3924

    Article  Google Scholar 

  5. Kikkeri R, Lepenies B, Adibekian A, Laurino P, Seeberger PH (2009) In vitro imaging and in vivo liver targeting with carbohydrate capped quantum dots. J Am Chem Soc 131:2110–2112

    Article  PubMed  CAS  Google Scholar 

  6. Tanaka K, Siwu ER, Minami K, Hasegawa K, Nozaki S, Kanayama Y, Koyama K, Chen WC, Paulson JC, Watanabe Y, Fukase K (2010) Noninvasive imaging of dendrimer-type N-glycan clusters: in vivo dynamics dependence on oligosaccharide structure. Angew Chem Int Ed 49:8195–8200

    Article  CAS  Google Scholar 

  7. Lee YC (1992) Biochemistry of carbohydrate-protein interaction. FASEB J 6:3193–3200

    PubMed  CAS  Google Scholar 

  8. Lee YC, Lee RT (1995) Carbohydrate-protein interactions: Basis of glycobiology. Acc Chem Res 28:321–327

    Article  CAS  Google Scholar 

  9. Mammen M, Choi SK, Whitesides GM (1998) Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37:2754–2794

    Article  Google Scholar 

  10. Lundquist JJ, Toone EJ (2002) The cluster glycoside effect. Chem Rev 102:555–578

    Article  PubMed  CAS  Google Scholar 

  11. de la Fuente JM, Eaton P, Barrientos AG, Rojas TC, Rojo J, Canada J, Fernandez A, Penades S (2001) Gold glyconanoparticles as water-soluble polyvalent models to study carbohydrate interactions. Angew Chem Int Ed 40:2257–2261

    Article  Google Scholar 

  12. Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 43:6042–6108

    Article  CAS  Google Scholar 

  13. Marradi M, Martin-Lomas M, Penades S (2010) Glyconanoparticles polyvalent tools to study carbohydrate-based interactions. Adv Carbohydr Chem Biochem 64:211–290

    Article  PubMed  CAS  Google Scholar 

  14. Reed MA, Randall JN, Aggarwal RJ, Matyi RJ, Moore TM, Wetsel AE (1988) Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. Phys Rev Lett 60:535–537

    Article  PubMed  CAS  Google Scholar 

  15. Rossetti R, Nakahara S, Brus LE (1983) Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J Chem Phys 79:1086–1088

    Article  CAS  Google Scholar 

  16. Gleiter H (1992) Nanostructured materials. Adv Mater 4:474–481

    Article  CAS  Google Scholar 

  17. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  CAS  Google Scholar 

  18. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  PubMed  CAS  Google Scholar 

  19. Nagahori N, Abe M, Nishimura S-I (2009) Structural and functional glycosphingolipidomics by glycoblotting with an aminooxy-functionalized gold nanoparticle. Biochemistry 48:583–594

    Article  PubMed  CAS  Google Scholar 

  20. Ohyanagi T, Nagahori N, Shimawaki K, Hinou H, Yamashita T, Sasaki A, Jin T, Iwanaga T, Kinjo M, Nishimura S-I (2011) Importance of sialic acid residues illuminated by live animal imaging using phosphorylcholine self-assembled monolayer-coated quantum dots. J Am Chem Soc 133:12507–12517

    Article  PubMed  CAS  Google Scholar 

  21. Shimaoka H, Kuramoto H, Furukawa J-I, Miura Y, Kurogochi M, Kita Y, Hinou H, Shinohara Y, Nishimura S-I (2007) One-pot solid-phase glycoblotting and probing by transoximization for high-throughput glycomics and glycoproteomics. Chem Eur J 13:1664–1673

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maho Amano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Amano, M., Hinou, H., Miyoshi, R., Nishimura, SI. (2014). Potential Usage for In Vivo Lectin Screening in Live Animals Utilizing Cell Surface Mimetic Glyco-nanoparticles, Phosphorylcholine-Coated Quantum Dots (PC-QDs). In: Hirabayashi, J. (eds) Lectins. Methods in Molecular Biology, vol 1200. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1292-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1292-6_31

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1291-9

  • Online ISBN: 978-1-4939-1292-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics