Skip to main content

Frontal Affinity Chromatography (FAC): Theory and Basic Aspects

  • Protocol
  • First Online:
Lectins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1200))

Abstract

Frontal affinity chromatography (FAC) is a versatile analytical tool for determining specific interactions between biomolecules and is particularly useful in the field of glycobiology. This article presents its basic aspects, merits, and theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kasai K, Ishii S (1975) Quantitative analysis of affinity chromatography of trypsin: a new technique for investigation of protein-ligand interaction. J Biochem 77:262–264

    Google Scholar 

  2. Kasai K, Oda Y, Nishikata M et al (1986) Frontal affinity chromatography: theory for its application to studies on specific interaction of biomolecules. J Chromatogr 376:33–47

    Article  CAS  Google Scholar 

  3. Nishikata M, Kasai K, Ishii S (1977) Affinity chromatography of trypsin and related enzymes. I: quantitative comparison of affinity adsorbents containing various arginine peptides. J Biochem 82:1475–1484

    PubMed  CAS  Google Scholar 

  4. Kasai K, Ishii S (1978) Affinity chromatography of trypsin and related enzymes. V. Basic studies of quantitative affinity chromatography. J Biochem 84:1051–1060

    PubMed  CAS  Google Scholar 

  5. Kasai K, Ishii S (1978) Studies on the interaction of immobilized trypsin and specific ligands by using quantitative affinity chromatography. J Biochem 84:1061–1069

    PubMed  CAS  Google Scholar 

  6. Yokosawa H, Ishii S (1977) Anhydrotrypsin: new features in ligand interactions revealed by affinity chromatography and thionine replacement. J Biochem 81:647–656

    PubMed  CAS  Google Scholar 

  7. Oda Y, Kasai K, Ishii S (1981) Studies on the specific interaction of concanavalin A and saccharides by affinity chromatography: application of quantitative affinity chromatography to a multivalent system. J Biochem 89:285–296

    PubMed  CAS  Google Scholar 

  8. Ohyama Y, Kasai K, Nomoto H et al (1985) Frontal affinity chromatography of ovalbumin glycoasparagines on a concanavalin A-Sepharose column: a quantitative study of the binding specificity of the lectin. J Biol Chem 260: 6882–6887

    PubMed  CAS  Google Scholar 

  9. Nakano NI, Oshio T, Fujimoto Y et al (1978) Study of drug-protein binding by affinity chromatography: interaction of bovine serum albumin and salicylic acid. J Pharm Sci 67: 1005–1008

    Article  PubMed  CAS  Google Scholar 

  10. Zhang B, Palcic MM, Schriemer DC et al (2001) Frontal affinity chromatography coupled to mass spectrometry for screening mixtures of enzyme inhibitors. Anal Biochem 299:173–182

    Article  PubMed  CAS  Google Scholar 

  11. Hirabayashi J, Arata Y, Kasai K (2000) Reinforcement of frontal affinity chromatography for effective analysis of lectin-oligosaccharide interactions. J Chromatogr 890:262–272

    Article  Google Scholar 

  12. Arata Y, Hirabayashi J, Kasai K (2001) Sugar-binding properties of the two lectin domains of the tandem repeat-type galectin LEC-1 (N32) of Caenorhabditis elegans: detailed analysis by an improved frontal affinity chromatography method. J Biol Chem 276: 3068–3077

    Article  PubMed  CAS  Google Scholar 

  13. Hirabayashi J, Hashidate T, Arata Y et al (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572:232–254

    Article  PubMed  CAS  Google Scholar 

  14. Kamiya Y, Yamaguchi Y, Takahashi N et al (2005) Sugar-binding properties of VIP36, an intracellular animal lectin operating as a cargo receptor. J Biol Chem 280:37178–37182

    Article  PubMed  CAS  Google Scholar 

  15. Matsubara H, Nakamura-Tsuruta S, Hirabayashi J et al (2007) Diverse sugar-binding specificities of marine invertebrate C-type lectins. Biosci Biotechnol Biochem 71:513–519

    Article  PubMed  CAS  Google Scholar 

  16. Kawsar SM, Fujii Y, Matsumoto R et al (2008) Isolation, purification, characterization and glycan-binding profile of a D-galactoside specific lectin from the marine sponge, Halichondria okadai. Comp Biochem Physiol B Biochem Mol Biol 150:349–357

    Article  PubMed  Google Scholar 

  17. Sato C, Yamakawa N, Kitajima K (2010) Measurement of glycan-based interactions by frontal affinity chromatography and surface plasmon resonance. Methods Enzymol 478: 219–232

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Kasai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kasai, Ki. (2014). Frontal Affinity Chromatography (FAC): Theory and Basic Aspects. In: Hirabayashi, J. (eds) Lectins. Methods in Molecular Biology, vol 1200. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1292-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1292-6_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1291-9

  • Online ISBN: 978-1-4939-1292-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics