Skip to main content

Analysis of Quantum Dots and Their Conjugates by Capillary Electrophoresis with Detection of Laser-Induced Luminescence

  • Protocol
  • First Online:
Quantum Dots: Applications in Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1199))

  • 2142 Accesses

Abstract

In many bioanalytical applications, important molecules such as DNA, proteins, and antibodies are routinely conjugated with fluorescent tags to reach an extraordinary sensitivity of analyses. Semiconductor nanoparticles, quantum dots, have already proved to be suitable components of highly luminescent tags, probes, and sensors with a broad applicability in analytical chemistry. Quantum dots provide high extinction coefficients together with a wide range of excitation wavelengths, size- and composition-tunable emissions, narrow and symmetric emission spectra, good quantum yields, relatively long size-dependent luminescence lifetime, and practically no photobleaching. Most of these properties are superior when compared with conventional organic fluorescent dyes. In this chapter, optimized procedures for the preparation of water-dispersed cadmium telluride (CdTe) quantum dots, conjugating reactions with antibodies, DNA, and macrocycles as well as their analyses by capillary electrophoresis are described. The potential of capillary electrophoresis for fast analyses of nanoparticles, their conjugates with antibodies, and immunocomplexes with targeted antigens is demonstrated on examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239

    Article  CAS  Google Scholar 

  2. Xu XY, Zhao Z, Qin LD, Wei W, Levine JE, Mirkin CA (2008) Fluorescence recovery assay for the detection of protein-DNA binding. Anal Chem 80:5616–5621

    Article  CAS  Google Scholar 

  3. Eychmuller A, Rogach AL (2000) Chemistry and photophysics of thiol-stabilized II-VI semiconductor nanocrystals. Pure Appl Chem 72:179–188

    Article  CAS  Google Scholar 

  4. Rogach AL, Franzl T, Klar TA, Feldmann J, Gaponik N, Lesnyak V, Shavel A, Eychmuller A, Rakovich YP, Donegan JF (2007) Aqueous synthesis of thiol-capped CdTe nanocrystals: state-of-the-art. J Phys Chem C 111: 14628–14637

    Article  CAS  Google Scholar 

  5. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  CAS  Google Scholar 

  6. Fu AH, Gu WW, Larabell C, Alivisatos AP (2005) Semiconductor nanocrystals for biological imaging. Curr Opin Neurobiol 15:568–575

    Article  CAS  Google Scholar 

  7. Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  8. Medintz IL, Pons T, Delehanty JB, Susumu K, Brunel FM, Dawson PE, Mattoussi H (2008) Intracellular delivery of quantum dot-protein cargos mediated by cell penetrating peptides. Bioconjug Chem 19:1785–1795

    Article  CAS  Google Scholar 

  9. Parak WJ, Boudreau R, Le Gros M, Gerion D, Zanchet D, Micheel CM, Williams SC, Alivisatos AP, Larabell C (2002) Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 14:882–885

    Article  CAS  Google Scholar 

  10. Rajh T, Micic OI, Nozik AJ (1993) Synthesis and characterization of surface-modified colloidal CdTe quantum dots. J Phys Chem 97:11999–12003

    Article  CAS  Google Scholar 

  11. Ma J, Chen JY, Zhang Y, Wang PN, Guo J, Yang WL, Wang CC (2007) Photochemical instability of thiol-capped CdTe quantum dots in aqueous solution and living cells: process and mechanism. J Phys Chem B 111:12012–12016

    Article  CAS  Google Scholar 

  12. Wang JH, Wang HQ, Zhang HL, Li XQ, Hua XF, Cao YC, Huang ZL, Zhao YD (2007) Purification of denatured bovine serum albumin coated CdTe quantum dots for sensitive detection of silver(I) ions. Anal Bioanal Chem 388:969–974

    Article  CAS  Google Scholar 

  13. Ma J, Chen JY, Guo J, Wang CC, Yang WL, Cheung NH, Wang PN (2006) Improvement of the photostability of thiol-capped CdTe quantum dots in aqueous solutions and in living cells by surface treatment. Nanotechnology 17:5875–5881

    Article  CAS  Google Scholar 

  14. Klostranec JM, Chan WCW (2006) Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 18:1953–1964

    Article  CAS  Google Scholar 

  15. Feng H, Law W, Yu L, Li S (2007) Immunoassay by capillary electrophoresis with quantum dots. J Chromatogr A 1156:75–79

    Article  CAS  Google Scholar 

  16. Goldman ER, Balighian ED, Kuno MK, Labrenz S, Tran PT, Anderson GP, Mauro JM, Mattoussi H (2002) Luminescent quantum dot-adaptor protein-antibody conjugates for use in fluoroimmunoassays. Phys Status Solidi B Basic Res 229:407–414

    Article  CAS  Google Scholar 

  17. Huang XY, Li L, Qian HF, Dong CQ, Ren JC (2006) A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew Chem Int Ed Engl 45:5140–5143

    Article  CAS  Google Scholar 

  18. Farias PMA, Santos BS, Menezes FD, Brasil AG, Lima LB, Silva DCN, Vieira AAS, Ferreira R, Fontes A, Almeida D, Barbosa LC, Cesar CL (2006) Monitoring activity of living cells marked with colloidal semiconductor quantum dots—art. no. 60880G. Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues IV 6088:114–121

    Google Scholar 

  19. Dennis AM, Bao G (2008) Quantum dot-fluorescent protein pairs as novel fluorescence resonance energy transfer probes. Nano Lett 8:1439–1445

    Article  CAS  Google Scholar 

  20. Goldman ER, Anderson GP, Tran PT, Mattoussi H, Charles PT, Mauro JM (2002) Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal Chem 74:841–847

    Article  CAS  Google Scholar 

  21. Pathak S, Davidson MC, Silva GA (2007) Characterization of the functional binding properties of antibody conjugated quantum dots. Nano Lett 7:1839–1845

    Article  CAS  Google Scholar 

  22. Ding SY, Rumbles G, Jones M, Tucker MP, Nedeljkovic J, Simon MN, Wall JS, Himmel ME (2004) Bioconjugation of (CdSe)ZnS quantum dots using a genetically engineered multiple polyhistidine tagged cohesin/dockerin protein polymer. Macromol Mater Eng 289:622–628

    Article  CAS  Google Scholar 

  23. Mamedova N, Kotov N, Rogach A, Studer J (2001) Albumin-CdTe nanoparticle bioconjugates: preparation, structure, and interunit energy transfer with antenna effect. Nano Lett 1:281–286

    Article  CAS  Google Scholar 

  24. Shan YM, Wang LP, Shi YH, Zhang H, Li HM, Liu HZ, Yang B, Li TY, Fang XX, Li W (2008) NHS-mediated QDs-peptide/protein conjugation and its application for cell labeling. Talanta 75:1008–1014

    Article  CAS  Google Scholar 

  25. Dwarakanath S, Bruno JG, Shastry A, Phillips T, John A, Kumar A, Stephenson LD (2004) Quantum dot-antibody and aptamer conjugates shift fluorescence upon binding bacteria. Biochem Biophys Res Commun 325:739–743

    Article  CAS  Google Scholar 

  26. Ipe BI, Shukla A, Lu HC, Zou B, Rehage H, Niemeyer CM (2006) Dynamic light-scattering analysis of the electrostatic interaction of hexahistidine-tagged cytochrome P450 enzyme with semiconductor quantum dots. Chemphyschem 7:1112–1118

    Article  CAS  Google Scholar 

  27. Ji XJ, Zheng JY, Xu JM, Rastogi VK, Cheng TC, DeFrank JJ, Leblanc RM (2005) (CdSe)ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors for detection of paraoxon. J Phys Chem B 109:3793–3799

    Article  CAS  Google Scholar 

  28. Lee J, Govorov AO, Dulka J, Kotov NA (2004) Bioconjugates of CdTe nanowires and Au nanoparticles: plasmon-exciton interactions, luminescence enhancement, and collective effects. Nano Lett 4:2323–2330

    Article  CAS  Google Scholar 

  29. Pereira M, Lai EPC, Hollebone B (2007) Characterization of quantum dots using capillary zone electrophoresis. Electrophoresis 28: 2874–2881

    Article  CAS  Google Scholar 

  30. Hermanson GT (1996) Bioconjugation techniques. Academic, San Diego

    Google Scholar 

  31. Kleparnik K, Bocek P (2010) Electrophoresis today and tomorrow: helping biologists’ dreams come true. Bioessays 32:218–226

    Article  CAS  Google Scholar 

  32. Heegaard NHH, Kennedy RT (2002) Antigen-antibody interactions in capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 768:93–103

    Article  CAS  Google Scholar 

  33. Schultz NM, Kennedy RT (1993) Rapid immunoassays using capillary electrophoresis with fluorescence detection. Anal Chem 65:3161–3165

    Article  CAS  Google Scholar 

  34. Schmalzing D, Buonocore S, Piggee C (2000) Capillary electrophoresis-based immunoassays. Electrophoresis 21:3919–3930

    Article  CAS  Google Scholar 

  35. Yang WC, Schmerr MJ, Jackman R, Bodemer W, Yeung ES (2005) Capillary electrophoresis-based noncompetitive immunoassay for the prion protein using fluorescein-labeled protein a as a fluorescent probe. Anal Chem 77: 4489–4494

    Article  CAS  Google Scholar 

  36. Shimura K, Karger BL (1994) Affinity probe capillary electrophoresis—analysis of recombinant human growth-hormone with a fluorescent-labeled antibody fragment. Anal Chem 66:9–15

    Article  CAS  Google Scholar 

  37. Pyell U (2010) Characterization of nanoparticles by capillary electromigration separation techniques. Electrophoresis 31:814–831

    Article  CAS  Google Scholar 

  38. Vicente G, Colon LA (2008) Separation of bioconjugated quantum dots using capillary electrophoresis. Anal Chem 80:1988–1994

    Article  CAS  Google Scholar 

  39. Song XT, Li L, Chan HF, Fang NH, Ren JC (2006) Highly efficient size separation of CdTe quantum dots by capillary gel electrophoresis using polymer solution as sieving medium. Electrophoresis 27:1341–1346

    Article  CAS  Google Scholar 

  40. Rogach AL, Katsikas L, Kornowski A, Su DS, Eychmuller A, Weller H (1996) Synthesis and characterization of thiol-stabilized CdTe nanocrystals. Ber Bunsen-Ges Phys Chem Chem Phys 100:1772–1778

    Article  CAS  Google Scholar 

  41. Klayman DL, Griffin TS (1973) Reaction of selenium with sodium-borohydride in protic solvents—facile method for introduction of selenium into organic molecules. J Am Chem Soc 95:197–200

    Article  CAS  Google Scholar 

  42. He Y, Lu HT, Sai LM, Su YY, Hu M, Fan CH, Huang W, Wang LH (2008) Microwave synthesis of water-dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with excellent photostability and biocompatibility. Adv Mater 20:3416–3421

    Article  CAS  Google Scholar 

  43. Su YY, He Y, Lu HT, Sai LM, Li QN, Li WX, Wang LH, Shen PP, Huang Q, Fan CH (2009) The cytotoxicity of cadmium based, aqueous phase—synthesized, quantum dots and its modulation by surface coating. Biomaterials 30:19–25

    Article  CAS  Google Scholar 

  44. Liskova M, Voracova I, Kleparnik K, Hezinova V, Prikryl J, Foret F (2011) Conjugation reactions in the preparations of quantum dot-based immunoluminescent probes for analysis of proteins by capillary electrophoresis. Anal Bioanal Chem 400:369–379

    Article  CAS  Google Scholar 

  45. Foret F, Krivankova L, Bocek P (1993) Capillary zone electrophoresis. Verlag Chemie, Weinheim

    Google Scholar 

  46. Kleparnik K, Bocek P (1991) Theoretical background for clinical and biomedical applications of electromigration techniques. J Chromatogr 569:3–42

    Article  CAS  Google Scholar 

  47. Ohshima H (2001) Approximate analytic expression for the electrophoretic mobility of a spherical colloidal particle. J Colloid Interface Sci 239:587–590

    Article  CAS  Google Scholar 

  48. Kleparnik K, Voracova I, Liskova M, Prikryl J, Hezinova V, Foret F (2011) Capillary electrophoresis immunoassays with conjugated quantum dots. Electrophoresis 32:1217–1223

    Article  CAS  Google Scholar 

  49. Forster T (1946) Energiewanderung Und Fluoreszenz. Naturwissenschaften 33:166–175

    Article  CAS  Google Scholar 

  50. Kleparnik K, Bocek P (2007) DNA diagnostics by capillary electrophoresis. Chem Rev 107:5279–5317

    Article  CAS  Google Scholar 

  51. Heegaard NHH (2009) Affinity in electrophoresis. Electrophoresis 30:S229–S239

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported by grant of the Grant Agency of the Czech Republic 203/11/2377.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Klepárník .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Klepárník, K., Datinská, V., Voráčová, I., Lišková, M. (2014). Analysis of Quantum Dots and Their Conjugates by Capillary Electrophoresis with Detection of Laser-Induced Luminescence. In: Fontes, A., Santos, B. (eds) Quantum Dots: Applications in Biology. Methods in Molecular Biology, vol 1199. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1280-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1280-3_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1279-7

  • Online ISBN: 978-1-4939-1280-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics