Skip to main content

Quantum Dots as Biophotonics Tools

  • Protocol
  • First Online:
Quantum Dots: Applications in Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1199))

Abstract

This chapter provides a short review of quantum dots (QDs) physics, applications, and perspectives. The main advantage of QDs over bulk semiconductors is the fact that the size became a control parameter to tailor the optical properties of new materials. Size changes the confinement energy which alters the optical properties of the material, such as absorption, refractive index, and emission bands. Therefore, by using QDs one can make several kinds of optical devices. One of these devices transforms electrons into photons to apply them as active optical components in illumination and displays. Other devices enable the transformation of photons into electrons to produce QDs solar cells or photodetectors. At the biomedical interface, the application of QDs, which is the most important aspect in this book, is based on fluorescence, which essentially transforms photons into photons of different wavelengths. This chapter introduces important parameters for QDs’ biophotonic applications such as photostability, excitation and emission profiles, and quantum efficiency. We also present the perspectives for the use of QDs in fluorescence lifetime imaging (FLIM) and Förster resonance energy transfer (FRET), so useful in modern microscopy, and how to take advantage of the usually unwanted blinking effect to perform super-resolution microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ekimov A, Onushchenko A (1981) Quantum size effect in 3-dimensional microscopic semiconductor crystals. JETP Lett 34(6):345–349

    Google Scholar 

  2. Rossetti R, Brus L (1982) Electron-hole recombination emission as a probe of surface-chemistry in aqueous CdS colloids. J Phys Chem 86(23):4470–4472

    Article  CAS  Google Scholar 

  3. Reed MA, Randall JN, Aggarwal RJ, Matyi RJ, Moore TM, Wetsel AE (1988) Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. Phys Rev Lett 60(6):535–537

    Article  CAS  Google Scholar 

  4. Rogalski A (2003) Infrared detectors: status and trends. Progr Quant Electron 27(2–3): 59–210

    Article  CAS  Google Scholar 

  5. Bruchez M Jr, Morrone M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  Google Scholar 

  6. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  CAS  Google Scholar 

  7. Nature Nanotechnology Editorial (2010) The many aspects of quantum dots. Nat Nanotechnol 5(6):381

    Article  Google Scholar 

  8. Anikeeva P, Halpert J, Bawendi M, Bulovic V (2009) Quantum dot light-emitting deices with electroluminescence tunable over the entire visible spectrum. Nano Lett 9(7):2532–2536

    Article  CAS  Google Scholar 

  9. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544

    Article  CAS  Google Scholar 

  10. Cotter D (1986) High-contrast ultrafast phase conjugation in semiconductor-doped glass. J Opt Soc Am B 3(8):246

    Google Scholar 

  11. Loss D, Di Vincenzo D (1998) Quantum computation with quantum dots. Phys Rev A 57(1):120–126

    Article  CAS  Google Scholar 

  12. Dabbousi BO, Rodriguez VJ, Mikulec FV, Heine JR, Mattoussi H, Ober R (1997) CdSe/ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101(46):9463–9475

    Article  CAS  Google Scholar 

  13. Santos BS, Farias PMA, Fontes A (2008) Semiconductor quantum dots for biological applications. In: Henine M (ed) Handbook of self assembled semiconductor nanostructures novel devices in photonics and electronics. Elsevier, Amsterdam, pp 773–798

    Chapter  Google Scholar 

  14. Goldman ER, Anderson GP, Tran PT, Mattoussi H, Charles PT, Mauro JM (2002) Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal Chem 74(4):841–847

    Article  CAS  Google Scholar 

  15. Walling M, Novak J, Shepard JRE (2009) Quantum dots for live cell and in vivo imaging. Int J Mol Sci 10(2):441–491

    Article  CAS  Google Scholar 

  16. Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biological applications of quantum dots. Biomaterials 28(31):4717–4732

    Article  CAS  Google Scholar 

  17. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21(1): 41–46

    Article  CAS  Google Scholar 

  18. Becker W (2005) Advanced time-correlated single photon counting techniques, vol 81, Springer series in chemical physics. Springer, Berlin

    Google Scholar 

  19. Wallrabe H, Periasamy A (2005) Imaging protein molecules using FRET and FLIM microscopy. Curr Opin Biotechnol 16(1):19–27

    Article  CAS  Google Scholar 

  20. Medintz IL, Mattoussi H (2009) Quantum dot-based resonance energy transfer and its growing application in biology. Phys Chem Chem Phys 11:17–45

    Article  CAS  Google Scholar 

  21. Shimizu KT, Neuhauser RG, Leatherdale CA, Empedocles SA, Woo WK, Bawendi MG (2001) Blinking statistics in single semiconductor nanocrystal quantum dots. Phys Rev B 3:205316-1–205316-5

    Google Scholar 

  22. Wang X, Ren X, Kahen K, Hahn MA, Rajeswaran M, Maccagnano-Zacher S, Silcox J, Cragg GE, Efros AL, Krauss TD (2009) Non-blinking semiconductor nanocrystals. Nature 459(7247):686–689

    Article  CAS  Google Scholar 

  23. Vieira CS, Almeida DB, de Thomaz AA, Menna-Barreto RF, dos Santos-Mallet JR, Cesar CL, Gomes SA, Feder D (2011) Studying nanotoxic effects of CdTe quantum dots in Trypanosoma cruzi. Mem Inst Oswaldo Cruz 106(2):158–165

    Article  CAS  Google Scholar 

  24. Lira RB, Seabra MABL, Matos ALL, Vasconcelos JV, Bezerra DP, de Paula E, Santos BS, Fontes A (2013) Studies on intracellular delivery of carboxyl-coated CdTe quantum dots mediated by fusogenic liposomes. J Mat Chem B 1:4297–4305

    Article  CAS  Google Scholar 

  25. Samia ACS, Dayal S, Clemens B (2006) Quantum dot-based energy transfer: perspectives and potential for applications in photodynamic therapy. Photochem Photobiol 82(3):617–625

    Article  CAS  Google Scholar 

  26. Stringer RC, Hoehn D, Grant SA (2008) Quantum dot-based biosensor for detection of human cardiac troponin I using a liquid-core waveguide. Sensors J 8(3):295–300

    Article  CAS  Google Scholar 

  27. Vannoy CH, Tavares AJ, Noor MO, Uddayasankar U, Krull UJ (2011) Biosensing with quantum dots: a microfluidic approach. Sensors 11:9732–9763

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos L. Cesar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cesar, C.L. (2014). Quantum Dots as Biophotonics Tools. In: Fontes, A., Santos, B. (eds) Quantum Dots: Applications in Biology. Methods in Molecular Biology, vol 1199. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1280-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1280-3_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1279-7

  • Online ISBN: 978-1-4939-1280-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics