Skip to main content

Live Cell Imaging of Phosphoinositide Dynamics During Legionella Infection

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1197))

Abstract

The “accidental” pathogen Legionella pneumophila replicates intracellularly in a distinct compartment, the Legionella-containing vacuole (LCV). To form this specific pathogen vacuole, the bacteria translocate via the Icm/Dot type IV secretion system approximately 300 different effector proteins into the host cell. Several of these secreted effectors anchor to the cytoplasmic face of the LCV membrane by binding to phosphoinositide (PI) lipids. L. pneumophila thus largely controls the localization of secreted bacterial effectors and the recruitment of host factors to the LCV through the modulation of the vacuole membrane PI pattern. The LCV PI pattern and its dynamics can be studied in real-time using fluorescently labeled protein probes stably produced by the soil amoeba Dictyostelium discoideum. In this chapter, we describe a protocol to (1) construct and handle amoeba model systems as a tool for observing PIs in live cell imaging, (2) capture rapid changes in membrane PI patterning during uptake events, and (3) observe the dynamics of LCV PIs over the course of a Legionella infection.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

ACES:

N-(2-acetamido)-2-aminoethane-sulfonic acid

HEPES:

N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid

icm/dot :

Intracellular multiplication/defective organelle trafficking

MOI:

Multiplicity of infection

PI:

Phosphoinositide

PtdIns(4)P :

Phosphatidylinositol-4-phosphate

T4SS:

Type IV secretion system

References

  1. Newton HJ, Ang DK, van Driel IR, Hartland EL (2010) Molecular pathogenesis of infections caused by Legionella pneumophila. Clin Microbiol Rev 23:274–298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Hilbi H, Hoffmann C, Harrison CF (2011) Legionella spp. outdoors: colonization, communication and persistence. Environ Microbiol Rep 3:286–296

    Article  CAS  PubMed  Google Scholar 

  3. Isberg RR, O’Connor TJ, Heidtman M (2009) The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 7:13–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Weber SS, Ragaz C, Hilbi H (2009) Pathogen trafficking pathways and host phosphoinositide metabolism. Mol Microbiol 71:1341–1352

    Article  CAS  PubMed  Google Scholar 

  5. Hubber A, Roy CR (2010) Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 26:261–283

    Article  CAS  PubMed  Google Scholar 

  6. Zhu W, Banga S, Tan Y, Zheng C, Stephenson R, Gately J, Luo ZQ (2011) Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of Legionella pneumophila. PLoS One 6:e17638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Hilbi H, Haas A (2012) Secretive bacterial pathogens and the secretory pathway. Traffic 13:1187–1197

    Article  CAS  PubMed  Google Scholar 

  8. Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657

    Article  PubMed  Google Scholar 

  9. Michell RH (2008) Inositol derivatives: evolution and functions. Nat Rev Mol Cell Biol 9:151–161

    Article  CAS  PubMed  Google Scholar 

  10. Hilbi H, Weber S, Finsel I (2011) Anchors for effectors: subversion of phospho-inositide lipids by Legionella. Front Microbiol 2:91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Weber SS, Ragaz C, Reus K, Nyfeler Y, Hilbi H (2006) Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog 2:e46

    Article  PubMed Central  PubMed  Google Scholar 

  12. Ragaz C, Pietsch H, Urwyler S, Tiaden A, Weber SS, Hilbi H (2008) The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell Microbiol 10:2416–2433

    Article  CAS  PubMed  Google Scholar 

  13. Brombacher E, Urwyler S, Ragaz C, Weber SS, Kami K, Overduin M, Hilbi H (2009) Rab1 guanine nucleotide exchange factor SidM is a major phosphatidyl-inositol 4-phosphate-binding effector protein of Legionella pneumophila. J Biol Chem 284:4846–4856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Weber SS, Ragaz C, Hilbi H (2009) The inositol polyphosphate 5-phosphatase OCRL1 restricts intracellular growth of Legionella, localizes to the replicative vacuole and binds to the bacterial effector LpnE. Cell Microbiol 11:442–460

    Article  CAS  PubMed  Google Scholar 

  15. Jank T, Bohmer KE, Tzivelekidis T, Schwan C, Belyi Y, Aktories K (2012) Domain organization of Legionella effector SetA. Cell Microbiol 14:852–868

    Article  CAS  PubMed  Google Scholar 

  16. Hsu F, Zhu W, Brennan L, Tao L, Luo ZQ, Mao Y (2012) Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase. Proc Natl Acad Sci U S A 109:13567–13572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Müller-Taubenberger A, Kortholt A, Eichinger L (2012) Simple system - substantial share: the use of Dictyostelium in cell biology and molecular medicine. Eur J Cell Biol 92(2):45–53

    Article  PubMed  Google Scholar 

  18. Hilbi H, Weber SS, Ragaz C, Nyfeler Y, Urwyler S (2007) Environmental predators as models for bacterial pathogenesis. Environ Microbiol 9:563–575

    Article  CAS  PubMed  Google Scholar 

  19. Clarke M (2010) Recent insights into host-pathogen interactions from Dictyostelium. Cell Microbiol 12:283–291

    Article  CAS  PubMed  Google Scholar 

  20. Levi S, Polyakov M, Egelhoff TT (2000) Green fluorescent protein and epitope tag fusion vectors for Dictyostelium discoideum. Plasmid 44:231–238

    Article  CAS  PubMed  Google Scholar 

  21. Faix J, Gerisch G, Noegel AA (1992) Overexpression of the csA cell adhesion molecule under its own cAMP-regulated promoter impairs morphogenesis in Dictyostelium. J Cell Sci 102:203–214

    CAS  PubMed  Google Scholar 

  22. Manstein DJ, Schuster HP, Morandini P, Hunt DM (1995) Cloning vectors for the production of proteins in Dictyostelium discoideum. Gene 162:129–134

    Article  CAS  PubMed  Google Scholar 

  23. Fischer M, Haase I, Simmeth E, Gerisch G, Müller-Taubenberger A (2004) A brilliant monomeric red fluorescent protein to visualize cytoskeleton dynamics in Dictyostelium. FEBS Lett 577:227–232

    Article  CAS  PubMed  Google Scholar 

  24. Veltman DM, Akar G, Bosgraaf L, van Haastert PJM (2009) A new set of small, extrachromosomal expression vectors for Dictyostelium discoideum. Plasmid 61:110–118

    Article  CAS  PubMed  Google Scholar 

  25. Urwyler S, Nyfeler Y, Ragaz C, Lee H, Mueller LN, Aebersold R, Hilbi H (2009) Proteome analysis of Legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic 10:76–87

    Article  CAS  PubMed  Google Scholar 

  26. Tiaden AN, Kessler A, Hilbi H (2013) Analysis of Legionella infection by flow cytometry. Methods Mol Biol 954:233–249

    Article  CAS  PubMed  Google Scholar 

  27. Weber SS, Oxenius A (2013) Immunofluorescence imaging of Legionella infection in vitro. Methods Mol Biol 954:265–277

    Article  CAS  PubMed  Google Scholar 

  28. Lu H, Clarke M (2005) Dynamic properties of Legionella-containing phagosomes in Dictyostelium amoebae. Cell Microbiol 7:995–1007

    Article  CAS  PubMed  Google Scholar 

  29. Segal G, Shuman HA (1998) Intracellular multiplication and human macrophage killing by Legionella pneumophila are inhibited by conjugal components of IncQ plasmid RSF1010. Mol Microbiol 30:197–208

    Article  CAS  PubMed  Google Scholar 

  30. Horwitz MA (1983) Formation of a novel phagosome by the Legionnaires’ disease bacterium (Legionella pneumophila) in human monocytes. J Exp Med 158:1319–1331

    Article  CAS  PubMed  Google Scholar 

  31. Feeley JC, Gibson RJ, Gorman GW, Langford NC, Rasheed JK, Mackel DC, Baine WB (1979) Charcoal-yeast extract agar: primary isolation medium for Legionella pneumophila. J Clin Microbiol 10:437–441

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Cocucci SM, Sussman M (1970) RNA in cytoplasmic and nuclear fractions of cellular slime mold amebas. J Cell Biol 45:399–407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Dormann D, Weijer G, Dowler S, Weijer CJ (2004) In vivo analysis of 3-phosphoinositide dynamics during Dictyostelium phagocytosis and chemotaxis. J Cell Sci 117:6497–6509

    Article  CAS  PubMed  Google Scholar 

  34. Servant G, Weiner OD, Herzmark P, Balla T, Sedat JW, Bourne HR (2000) Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287:1037–1040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Parent CA, Blacklock BJ, Froehlich WM, Murphy DB, Devreotes PN (1998) G-protein signaling events are activated at the leading edge of chemotactic cells. Cell 95:81–91

    Article  CAS  PubMed  Google Scholar 

  36. Clarke M, Engel U, Giorgione J, Müller-Taubenberger A, Prassler J, Veltman D, Gerisch G (2010) Curvature recognition and force generation in phagocytosis. BMC Biol 8:154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Clarke M, Maddera L, Engel U, Gerisch G (2010) Retrieval of the vacuolar H-ATPase from phagosomes revealed by live cell imaging. PLoS One 5:e8585

    Article  PubMed Central  PubMed  Google Scholar 

  38. Pendaries C, Tronchere H, Arbibe L, Mounier J, Gozani O, Cantley L, Fry MJ, Gaits-Iacovoni F, Sansonetti PJ, Payrastre B (2006) PtdIns5P activates the host cell PI3-kinase/Akt pathway during Shigella flexneri infection. EMBO J 25:1024–1034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Max von Pettenkofer Institute, Ludwig-Maximilians University Munich, and the German Research Foundation (DFG; HI 1511/1-1, SPP1580, SFB914).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Hilbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Weber, S., Hilbi, H. (2014). Live Cell Imaging of Phosphoinositide Dynamics During Legionella Infection. In: Vergunst, A., O'Callaghan, D. (eds) Host-Bacteria Interactions. Methods in Molecular Biology, vol 1197. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1261-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1261-2_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1260-5

  • Online ISBN: 978-1-4939-1261-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics