Skip to main content

Functional Analysis of Hox Genes in Zebrafish

  • Protocol
  • First Online:
Hox Genes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1196))

Abstract

The zebrafish model organism is well suited to study the role of specific genes, such as hox genes, in embryogenesis and organ function. The ability to modulate the activity of hox genes in living zebrafish embryos represents a cornerstone of such functional analyses. In this chapter we outline the basic methodology for nucleic acid injections into 1–2-cell-stage zebrafish embryos. We also report variations in this method to allow injection of mRNA, DNA, and antisense oligonucleotides to either overexpress, knock down, or knock out specific genes in zebrafish embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander T, Nolte C, Krumlauf R (2009) Hox genes and segmentation of the hindbrain and axial skeleton. Annu Rev Cell Dev Biol 25:431–456

    Article  CAS  PubMed  Google Scholar 

  2. Howe K, Clark MD, Torroja CF et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Westerfield M (2007) The zebrafish book, 5th edition; a guide for the laboratory use of zebrafish (Danio rerio). University of Oregon Press, Eugene

    Google Scholar 

  4. Villefranc JA, Amigo J, Lawson ND (2007) Gateway compatible vectors for analysis of gene function in the zebrafish. Dev Dyn 236:3077–3087

    Article  CAS  PubMed  Google Scholar 

  5. Kwan KM, Fujimoto E, Grabher C et al (2007) The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236:3088–3099

    Article  CAS  PubMed  Google Scholar 

  6. Ekker SC, Larson JD (2001) Morphant technology in model developmental systems. Genesis 30:89–93

    Article  CAS  PubMed  Google Scholar 

  7. Kawakami K (2007) Tol2: a versatile gene transfer vector in vertebrates. Genome Biol 8(Suppl 1):S7

    Article  PubMed Central  PubMed  Google Scholar 

  8. Suster ML, Abe G, Schouw A et al (2011) Transposon-mediated BAC transgenesis in zebrafish. Nat Protoc 6:1998–2021

    Article  CAS  PubMed  Google Scholar 

  9. Suster ML, Kikuta H, Urasaki A et al (2009) Transgenesis in zebrafish with the Tol2 transposon system. In: Cartwright EJ (ed) Methods in molecular biology, vol 561. Humana Press, Totowa, NJ, pp 41–63

    Google Scholar 

  10. Kikuta H, Kawakami K (2009) Transient and stable transgenesis using Tol2 transposon vectors. In: Lieschke GJ, Oates AC, Kawakami K. (eds) Methods in molecular biology, vol 546. Humana Press, Totowa, NJ, pp 69–84

    Google Scholar 

  11. Suster ML, Sumiyama K, Kawakami K (2009) Transposon-mediated BAC transgenesis in zebrafish and mice. BMC Genomics 10:477

    Article  PubMed Central  PubMed  Google Scholar 

  12. Kimmel CB, Ballard WW, Kimmel SR et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  CAS  PubMed  Google Scholar 

  13. Urnov FD, Rebar EJ, Holmes MC et al (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  PubMed  Google Scholar 

  14. Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hwang WY, Fu Y, Reyon D, Maeder ML et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Xiao A, Wang Z, Hu Y et al (2013) Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res. doi:10.1093/nar/gkt464

    Google Scholar 

  17. Gupta A, Hall VL, Kok FO et al (2013) Targeted chromosomal deletions and inversions in zebrafish. Genome Res 23:1008–1017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Bedell VM, Wang Y, Campbell JM et al (2012) In vivo genome editing using a high-efficiency TALEN system. Nature 491:114–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Narishige Web News (2007) http://news.narishige-group.com/pdf/news001en.pdf. Accessed 4 Dec 2013

  20. Alexandre D, Clarke JD, Oxtoby E et al (1996) Ectopic expression of Hoxa-1 in the zebrafish alters the fate of the mandibular arch neural crest and phenocopies a retinoic acid-induced phenotype. Development 122:735–746

    CAS  PubMed  Google Scholar 

  21. Vlachakis N, Choe SK, Sagerström CG (2001) Meis3 synergizes with Pbx4 and Hoxb1b in promoting hindbrain fates in the zebrafish. Development 128:1299–1312

    CAS  PubMed  Google Scholar 

  22. McClintock JM, Carlson R, Mann DM et al (2001) Consequences of Hox gene duplication in the vertebrates: an investigation of the zebrafish Hox paralogue group 1 genes. Development 128:2471–2484

    CAS  PubMed  Google Scholar 

  23. Choe S-K, Zhang X, Hirsch N et al (2011) A screen for hoxb1-regulated genes identifies ppp1r14al as a regulator of the rhombomere 4 Fgf-signaling center. Dev Biol. doi:10.1016/j.ydbio.2011.05.676

    PubMed Central  PubMed  Google Scholar 

  24. Bruce AE, Oates AC, Prince VE et al (2001) Additional hox clusters in the zebrafish: divergent expression patterns belie equivalent activities of duplicate hoxB5 genes. Evol Dev 3:127–144

    Article  CAS  PubMed  Google Scholar 

  25. Gerety SS, Wilkinson DG (2011) Morpholino artifacts provide pitfalls and reveal a novel role for pro-apoptotic genes in hindbrain boundary development. Dev Biol 350:279–289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants NS038183 and HD065081 to CGS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles G. Sagerström .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ladam, F., Sagerström, C.G. (2014). Functional Analysis of Hox Genes in Zebrafish. In: Graba, Y., Rezsohazy, R. (eds) Hox Genes. Methods in Molecular Biology, vol 1196. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1242-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1242-1_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1241-4

  • Online ISBN: 978-1-4939-1242-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics