Advertisement

Hox Genes pp 103-120 | Cite as

Topological Organization of Drosophila Hox Genes Using DNA Fluorescent In Situ Hybridization

  • Frédéric BantigniesEmail author
  • Giacomo Cavalli
Part of the Methods in Molecular Biology book series (MIMB, volume 1196)

Abstract

DNA fluorescent in situ hybridization (FISH) is the method of choice to study genomic organization at the single-cell level. It has been recently used to study the topological organization of the homeotic bithorax complex (BX-C) in Drosophila as well as to describe long-range genomic interactions between the BX-C and the Antennapedia complex (ANT-C), in addition to other genomic loci. Coupled with immunofluorescence, FISH can be used to study the relative positioning of homeotic genes with nuclear subcompartments, such as Polycomb-group (PcG) bodies, transcription factories, or the nuclear lamina. Here, we describe two multicolor 3D-FISH protocols; one for whole mount Drosophila embryos or larval discs and one for Drosophila-cultured cells. Both methods can be applied to any single copy locus of interest and are compatible with immunostaining (FISH-I).

Key words

Fluorescent in situ hybridization Immunostaining Nuclear organization Gene positioning Chromosome topology Nuclear bodies Bithorax complex Antennapedia complex Polycomb-group proteins Drosophila 

Notes

Acknowledgement

F.B. is supported by the CNRS. Research at the G.C. lab was supported by grants from the European Research Council (ERC-2008-AdG No 232947), the CNRS, the European Network of Excellence EpiGeneSys, the Agence Nationale de la Recherche and the Association pour la Recherche sur le Cancer.

References

  1. 1.
    Lanzuolo C, Roure V, Dekker J, Bantignies F, Orlando V (2007) Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex. Nat Cell Biol 9(10):1167–1174. doi: 10.1038/ncb1637, ncb1637 [pii]PubMedCrossRefGoogle Scholar
  2. 2.
    Ferraiuolo MA, Rousseau M, Miyamoto C, Shenker S, Wang XQ, Nadler M, Blanchette M, Dostie J (2010) The three-dimensional architecture of Hox cluster silencing. Nucleic Acids Res 38(21):7472–7484. doi: 10.1093/nar/gkq644, gkq644 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Noordermeer D, Leleu M, Splinter E, Rougemont J, De Laat W, Duboule D (2011) The dynamic architecture of Hox gene clusters. Science 334(6053):222–225. doi: 10.1126/science.1207194 PubMedCrossRefGoogle Scholar
  4. 4.
    Bantignies F, Roure V, Comet I, Leblanc B, Schuettengruber B, Bonnet J, Tixier V, Mas A, Cavalli G (2011) Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila. Cell 144(2):214–226. doi: 10.1016/j.cell.2010.12.026, S0092-8674(10)01485-6 [pii]PubMedCrossRefGoogle Scholar
  5. 5.
    Tolhuis B, Blom M, Kerkhoven RM, Pagie L, Teunissen H, Nieuwland M, Simonis M, de Laat W, van Lohuizen M, van Steensel B (2011) Interactions among Polycomb domains are guided by chromosome architecture. PLoS Genet 7(3):e1001343. doi: 10.1371/journal.pgen.1001343 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, Cavalli G (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148(3):458–472. doi: 10.1016/j.cell.2012.01.010 PubMedCrossRefGoogle Scholar
  7. 7.
    Bantignies F, Grimaud C, Lavrov S, Gabut M, Cavalli G (2003) Inheritance of Polycomb-dependent chromosomal interactions in Drosophila. Genes Dev 17(19):2406–2420. doi: 10.1101/gad.269503 17/19/2406 [pii] PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Grimaud C, Bantignies F, Pal-Bhadra M, Ghana P, Bhadra U, Cavalli G (2006) RNAi components are required for nuclear clustering of Polycomb group response elements. Cell 124(5):957–971. doi: 10.1016/j.cell.2006.01.036, S0092-8674(06)00171-1 [pii]PubMedCrossRefGoogle Scholar
  9. 9.
    Beliveau BJ, Joyce EF, Apostolopoulos N, Yilmaz F, Fonseka CY, McCole RB, Chang Y, Li JB, Senaratne TN, Williams BR, Rouillard JM, Wu CT (2012) Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc Natl Acad Sci U S A 109(52):21301–21306. doi: 10.1073/pnas.1213818110 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Bienko M, Crosetto N, Teytelman L, Klemm S, Itzkovitz S, van Oudenaarden A (2013) A versatile genome-scale PCR-based pipeline for high-definition DNA FISH. Nat Methods 10(2):122–124. doi: 10.1038/nmeth.2306 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Brasset E, Bantignies F, Court F, Cheresiz S, Conte C, Vaury C (2007) Idefix insulator activity can be modulated by nearby regulatory elements. Nucleic Acids Res 35(8):2661–2670. doi: 10.1093/nar/gkm140 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Chaumeil J, Micsinai M, Skok JA (2013) Combined immunofluorescence and DNA FISH on 3D-preserved interphase nuclei to study changes in 3D nuclear organization. J Vis Exp 72:e50087. doi: 10.3791/50087 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institut de Génétique HumaineCNRS UPR-1142Montpellier Cedex 5France

Personalised recommendations