Hox Genes pp 89-102 | Cite as

The Genetics of Murine Hox Loci: TAMERE, STRING, and PANTHERE to Engineer Chromosome Variants

  • Patrick Tschopp
  • Denis DubouleEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1196)


Following their duplications at the base of the vertebrate clade, Hox gene clusters underwent remarkable sub- and neo-functionalization events. Many of these evolutionary innovations can be associated with changes in the transcriptional regulation of their genes, where an intricate relationship between the structure of the gene cluster and the architecture of the surrounding genomic landscape is at play. Here, we report on a portfolio of in vivo genome engineering strategies in mice, which have been used to probe and decipher the genetic and molecular underpinnings of the complex regulatory mechanisms implemented at these loci.

Key words

Mouse genetics Gene regulation In vivo genome engineering TAMERE STRING PANTHERE 



Patrick Tschopp is supported by postdoctoral fellowships from the Swiss National Science Foundation (SNF), EMBO, and the Human Frontiers Science Program (HFSP). Work in the Duboule laboratories is supported by the Ecole Polytechnique Fédérale de Lausanne, the University of Geneva, the National Center for Competence in Research Frontiers in Genetics, the Swiss National Research Fund, and the ERC grant We thank Bénédicte Mascrez for the organization of the genotyping pipeline and the supervision of mouse strain production.


  1. 1.
    Krumlauf R (1994) Hox genes in vertebrate development review. Cell 78:191–201PubMedCrossRefGoogle Scholar
  2. 2.
    Deschamps J (2007) Ancestral and recently recruited global control of the Hox genes in development. Curr Opin Genet Dev 17:422–427. doi: 10.1016/j.gde.2007.07.008 PubMedCrossRefGoogle Scholar
  3. 3.
    Ohno S (1970) Evolution by gene duplication. George Alien & Unwin Ltd., LondonCrossRefGoogle Scholar
  4. 4.
    Garcia-Fernàndez J (2005) The genesis and evolution of homeobox gene clusters. Nat Publ Group 6:881–892. doi: 10.1038/nrg1723 Google Scholar
  5. 5.
    King MC, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188:107–116PubMedCrossRefGoogle Scholar
  6. 6.
    Duboule D (2007) The rise and fall of Hox gene clusters. Development 134:2549–2560. doi: 10.1242/dev.001065 PubMedCrossRefGoogle Scholar
  7. 7.
    Brault V, Pereira P, Duchon A, Hérault Y (2006) Modeling chromosomes in mouse to explore the function of genes, genomic disorders, and chromosomal organization. PLoS Genet 2:e86PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Hérault Y, Rassoulzadegan M, Cuzin F, Duboule D (1998) Engineering chromosomes in mice through targeted meiotic recombination (TAMERE). Nat Genet 20:381–384. doi: 10.1038/3861 PubMedCrossRefGoogle Scholar
  9. 9.
    Spitz F, Herkenne C, Morris MA, Duboule D (2005) Inversion-induced disruption of the Hoxd cluster leads to the partition of regulatory landscapes. Nat Genet 37:889–893. doi: 10.1038/ng1597 PubMedCrossRefGoogle Scholar
  10. 10.
    Tschopp P, Fraudeau N, Béna F, Duboule D (2011) Reshuffling genomic landscapes to study the regulatory evolution of Hox gene clusters. Proc Natl Acad Sci U S A 108:10632–10637. doi: 10.1073/pnas.1102985108 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Marinić M, Aktas T, Ruf S, Spitz F (2013) An integrated Holo-Enhancer unit defines tissue and gene specificity of the Fgf8 regulatory landscape. Dev Cell 24:530–542. doi: 10.1016/j.devcel.2013.01.025 PubMedCrossRefGoogle Scholar
  12. 12.
    Tschopp P, Duboule D (2011) A genetic approach to the transcriptional regulation of Hox gene clusters. Annu Rev Genet 45:145–166. doi: 10.1146/annurev-genet-102209-163429 PubMedCrossRefGoogle Scholar
  13. 13.
    Ruf S, Symmons O, Uslu VV et al (2011) Large-scale analysis of the regulatory architecture of the mouse genome with a transposon-associated sensor. Nat Genet 43:379–386. doi: 10.1038/ng.790 PubMedCrossRefGoogle Scholar
  14. 14.
    Montavon T, Soshnikova N, Mascrez B et al (2011) A regulatory archipelago controls Hox genes transcription in digits. Cell 147:1132–1145. doi: 10.1016/j.cell.2011.10.023 PubMedCrossRefGoogle Scholar
  15. 15.
    Montavon TT, Thevenet LL, Duboule DD (2012) Impact of copy number variations (CNVs) on long-range gene regulation at the HoxD locus. Proc Natl Acad Sci U S A 109:20204–20211. doi: 10.1073/pnas.1217659109 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Andrey G, Montavon T, Mascrez B et al (2013) A switch between topological domains underlies HoxD genes collinearity in mouse limbs. Science 340:1234167. doi: 10.1126/science.1234167 PubMedCrossRefGoogle Scholar
  17. 17.
    Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A 85(14):5166–5170PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Orban PC, Chui D, Marth JD (1992) Tissue-and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci U S A 89(15):6861–6865PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Tarchini B, Nguyen Huynh TH, Duboule D (2005) HoxD cluster scanning deletions identify multiple defects leading to paralysis in the mouse mutant Ironside. Genes Dev 19:2862–2876. doi: 10.1101/gad.351105 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Tarchini B, Duboule D (2006) Control of Hoxd genes’ collinearity during early limb development. Dev Cell 10:93–103. doi: 10.1016/j.devcel.2005.11.014 PubMedCrossRefGoogle Scholar
  21. 21.
    van der Hoeven F, Zakany J, Duboule D (1996) Gene transpositions in the HoxD complex reveal a hierarchy of regulatory controls. Cell 85:1025–1035PubMedCrossRefGoogle Scholar
  22. 22.
    Spitz F, Gonzalez F, Peichel C et al (2001) Large scale transgenic and cluster deletion analysis of the HoxD complex separate an ancestral regulatory module from evolutionary innovations. Genes Dev 15:2209–2214. doi: 10.1101/gad.205701 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Tschopp P, Christen AJ, Duboule D (2012) Bimodal control of Hoxd gene transcription in the spinal cord defines two regulatory subclusters. Development 139:929–939. doi: 10.1242/dev.076794 PubMedCrossRefGoogle Scholar
  24. 24.
    Skarnes WC, von Melchner H, Wurst W et al (2004) A public gene trap resource for mouse functional genomics. Nat Genet 36:543–544. doi: 10.1038/ng0604-543 PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Wu S, Ying G, Wu Q, Capecchi MR (2007) Toward simpler and faster genome-wide mutagenesis in mice. Nat Genet 39:922–930. doi: 10.1038/ng2060 PubMedCrossRefGoogle Scholar
  26. 26.
    Vidal F, Sage J, Cuzin F, Rassoulzadegan M (1998) Cre expression in primary spermatocytes: a tool for genetic engineering of the germ line. Mol Reprod Dev 51:274–280. doi: 10.1002/(SICI)1098-2795(199811)51:3<274::AID-MRD6>3.0.CO;2-M PubMedCrossRefGoogle Scholar
  27. 27.
    Tang S-HE, Silva FJ, Tsark WMK, Mann JR (2002) A Cre/loxP-deleter transgenic line in mouse strain 129S1/SvImJ. Genesis 32:199–202. doi: 10.1002/gene.10030 PubMedCrossRefGoogle Scholar
  28. 28.
    Gough SM, Slape CI, Aplan PD (2011) NUP98 gene fusions and hematopoietic malignancies: common themes and new biologic insights. Blood 118:6247–6257. doi: 10.1182/blood-2011-07-328880 PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Dymecki SM (1996) Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc Natl Acad Sci U S A 93:6191–6196PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Zakany JJ, Kmita MM, Alarcon PP et al (2001) Localized and transient transcription of Hox genes suggests a link between patterning and the segmentation clock. Cell 106:207–217. doi: 10.1016/S0092-8674(01)00436-6 PubMedCrossRefGoogle Scholar
  31. 31.
    Godwin AR, Stadler HS, Nakamura K, Capecchi MR (1998) Detection of targeted GFP-Hox gene fusions during mouse embryogenesis. Proc Natl Acad Sci U S A 95:13042–13047PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Hérault Y, Kmita M, Sawaya CC, Duboule D (2002) A nested deletion approach to generate Cre deleter mice with progressive Hox profiles. Int J Dev Biol 46:185–191PubMedGoogle Scholar
  33. 33.
    Dixon JR, Selvaraj S, Yue F et al (2013) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380. doi: 10.1038/nature11082 CrossRefGoogle Scholar
  34. 34.
    Noordermeer DD, Leleu MM, Splinter EE et al (2011) The dynamic architecture of Hox gene clusters. Science 334:222–225. doi: 10.1126/science.1207194 PubMedCrossRefGoogle Scholar
  35. 35.
    Soshnikova N, Duboule D (2009) Epigenetic temporal control of mouse Hox genes in vivo. Science 324:1320–1323. doi: 10.1126/science.1171468 PubMedCrossRefGoogle Scholar
  36. 36.
    Grégoire D, Kmita M (2008) Recombination between inverted loxP sites is cytotoxic for proliferating cells and provides a simple tool for conditional cell ablation. Proc Natl Acad Sci U S A 105:14492–14496PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Tschopp P, Duboule D (2011) A regulatory “landscape effect” over the HoxD cluster. Dev Biol 351:288–296. doi: 10.1016/j.ydbio.2010.12.034 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of GeneticsHarvard Medical SchoolBostonUSA
  2. 2.National Research Centre ‘Frontiers in Genetics’, Department of Genetics and EvolutionUniversity of Geneva, Sciences IIIGeneva 4Switzerland
  3. 3.School of Life SciencesFederal Institute of Technology (EPFL)LausanneSwitzerland

Personalised recommendations