Hox Genes pp 49-57 | Cite as

A Genetic Strategy to Obtain P-Gal4 Elements in the Drosophila Hox Genes

  • Luis de Navas
  • David Foronda
  • Delia del Saz
  • Ernesto Sánchez-HerreroEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1196)


The Drosophila Gal4/UAS system allows the expression of any gene of interest in restricted domains. We devised a genetic strategy, based on the P-element replacement and UAS-y + techniques, to generate Gal4 lines inserted in Hox genes of Drosophila that are, at the same time, mutant for the resident genes. This makes possible to express different wild-type or mutant Hox proteins in the precise domains of Hox gene expression, and thus to test the functional value of these proteins in mutant rescue experiments.

Key words

Drosophila Gal4/UAS system P-element Ultrabithorax Abdominal-B 



Work in the laboratory is being supported by a grant from the Spanish Ministerio de Economía y Competitividad (BFU2011-26075) and an institutional grant from the Fundación Ramón Areces. Delia del Saz is being supported by an FPI fellowship from the Spanish Ministerio de Economía y Competitividad.


  1. 1.
    Maeda RK, Karch F (2006) The ABC of the BX-C: the bithorax complex explained. Development 133:1413–1422PubMedCrossRefGoogle Scholar
  2. 2.
    Kaufman TC, Seeger MA, Olsen G (1990) Molecular and genetic organization of the antennapedia gene complex of Drosophila melanogaster. Adv Genet 27:309–362PubMedCrossRefGoogle Scholar
  3. 3.
    Alexander T, Nolte C, Krumlauf R (2009) Hox genes and segmentation of the hindbrain and axial skeleton. Annu Rev Cell Dev Biol 25:431–456PubMedCrossRefGoogle Scholar
  4. 4.
    Wellik DM, Capecchi MR (2003) Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 301:363–367PubMedCrossRefGoogle Scholar
  5. 5.
    Greer JM, Puetz J, Thomas KR et al (2000) Maintenance of functional equivalence during paralogous Hox gene evolution. Nature 403:661–665PubMedCrossRefGoogle Scholar
  6. 6.
    Zhao Y, Potter SS (2001) Functional specificity of the Hoxa13 homeobox. Development 128:3197–3207PubMedGoogle Scholar
  7. 7.
    Zhao Y, Potter SS (2002) Functional comparison of the Hoxa4, Hoxa10 and Hoxa11 homeoboxes. Dev Biol 244:21–36PubMedCrossRefGoogle Scholar
  8. 8.
    Greig S, Akam M (1995) The role of homeotic genes in the specification of the Drosophila gonad. Curr Biol 5:1057–1062PubMedCrossRefGoogle Scholar
  9. 9.
    Casares F, Calleja M, Sánchez-Herrero E (1996) Functional similarity in appendage specification by the Ultrabithorax and abdominal-A Drosophila Hox genes. EMBO J 15:3934–3942PubMedCentralPubMedGoogle Scholar
  10. 10.
    Hirth F, Loop T, Egger B et al (2001) Functional equivalence of Hox gene products in the specification of the tritocerebrum during embryonic brain development of Drosophila. Development 128:4781–4788PubMedGoogle Scholar
  11. 11.
    Gehring WJ, Affolter M, Bürglin T (1994) Homeodomain proteins. Annu Rev Biochem 63:487–526PubMedCrossRefGoogle Scholar
  12. 12.
    Merabet S, Hudry B, Saadaoui M et al (2009) Classification of sequence signatures: a guide to Hox protein function. Bioessays 31:500–511PubMedCrossRefGoogle Scholar
  13. 13.
    Rong YS, Golic KG (2000) Gene targeting by homologous recombination in Drosophila. Science 288:2013–2018PubMedCrossRefGoogle Scholar
  14. 14.
    Hittinger CT, Stern DL, Carroll SB (2005) Pleiotropic functions of a conserved insect-specific Hox peptide motif. Development 132:5261–5270PubMedCrossRefGoogle Scholar
  15. 15.
    O’Keefe DD, Thor S, Thomas JB (1998) Function and specificity of LIM domains in Drosophila nervous system and wing development. Development 125:3915–3923PubMedGoogle Scholar
  16. 16.
    Rincón-Limas DE, Lu CH, Canal I et al (2000) The level of DLDB/CHIP controls the activity of the LIM homeodomain protein Apterous: evidence for a functional tetramer complex in vivo. EMBO J 19:2602–2614PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Engels WR (1996) P-elements in Drosophila. In: Saedler H, Gierl A (eds) Transposable elements. Springer, Berlin, pp 103–123CrossRefGoogle Scholar
  18. 18.
    Sepp KJ, Auld VJ (1999) Conversion of lacZ enhancer trap lines to GAL4 lines using targeted transposition in Drosophila melanogaster. Genetics 151:1093–1101PubMedCentralPubMedGoogle Scholar
  19. 19.
    Calleja M, Moreno E, Pelaz S et al (1996) Visualization of gene expression in living adult Drosophila. Science 274:252–255PubMedCrossRefGoogle Scholar
  20. 20.
    Engström Y, Schneuwly S, Gehring WJ (1992) Spatial and temporal expression of an Antennapedia/lacZ gene construct integrated into the endogenous Antennapedia gene of Drosophila melanogaster. Roux’s Arch Dev Biol 201:65–80CrossRefGoogle Scholar
  21. 21.
    Galloni M, Gyurkovics H, Schedl P et al (1993) The bluetail transposon: evidence for independent cis-regulatory domains and domain boundaries in the bithorax complex. EMBO J 12:1087–1097PubMedCentralPubMedGoogle Scholar
  22. 22.
    McCall K, O’Connor MB, Bender W (1994) Enhancer traps in the Drosophila bithorax complex mark parasegmental domains. Genetics 138:389–399Google Scholar
  23. 23.
    Casares F, Bender W, Merriam J et al (1997) Interactions of Drosophila Ultrabithorax regulatory regions with native and foreign promoters. Genetics 145:123–137PubMedCentralPubMedGoogle Scholar
  24. 24.
    Zhou J, Levine M (1999) A novel cis-regulatory element, the PTS, mediates an anti-insulator activity in the Drosophila embryo. Cell 99:567–575PubMedCrossRefGoogle Scholar
  25. 25.
    Barges S, Mihaly J, Galloni M et al (2000) The Fab-8 boundary defines the distal limit of the bithorax complex iab-7 domain and insulates iab-7 from initiation elements and a PRE in the adjacent iab-8 domain. Development 127:779–790PubMedGoogle Scholar
  26. 26.
    Bender W, Hudson A (2000) P element homing to the Drosophila bithorax complex. Development 127:3981–3992PubMedGoogle Scholar
  27. 27.
    Fitzgerald DP, Bender W (2001) Polycomb group repression reduces DNA accessibility. Mol Cell Biol 21:6585–6597PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Estrada B, Casares F, Busturia A et al (2002) Genetic and molecular characterization of a novel iab-8 regulatory domain in the Abdominal-B gene of Drosophila melanogaster. Development 129:5195–5204PubMedGoogle Scholar
  29. 29.
    de Navas LF, Foronda D, Suzanne M et al (2006) A simple and efficient method to identify replacements of P-lacZ by P-Gal4 lines allows obtaining Gal4 insertions in the bithorax complex of Drosophila. Mech Dev 123:860–867PubMedCrossRefGoogle Scholar
  30. 30.
    Hudry B, Viala S, Graba Y et al (2011) Visualization of protein interactions in living Drosophila embryos by the bimolecular fluorescence complementation assay. BMC Dev Biol 9:5CrossRefGoogle Scholar
  31. 31.
    Robertson HM, Preston CR, Phillis RW et al (1988) A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118:461–470PubMedCentralPubMedGoogle Scholar
  32. 32.
    Reuter G, Hoffmann G, Dorn R et al (1993) Construction and characterization of a TM3 balancer carrying P[(ry+) ∆2-3] as a stable transposase source. Dros Info Serv 72:78–79Google Scholar
  33. 33.
    Engels WR, Johnson-Schlitz DM, Eggleston WB et al (1990) High-frequency P element loss in Drosophila is homolog dependent. Cell 62:515–525PubMedCrossRefGoogle Scholar
  34. 34.
    Gloor GB, Nassif NA, Johnson-Schlitz DM et al (1991) Targeted gene replacement in Drosophila via P element-induced gap repair. Science 253:1110–1117PubMedCrossRefGoogle Scholar
  35. 35.
    Gohl DM, Silies MA, Gao XJ et al (2011) A versatile in vivo system for directed dissection of gene expression patterns. Nat Methods 8:231–237PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Potter CJ, Tasic B, Russler EV et al (2010) The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141:536–548PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Yagi R, Mayer F, Basler K (2010) Refined LexA transactivators and their use in combination with the Drosophila Gal4 system. Proc Natl Acad Sci U S A 107:6166–61671Google Scholar
  38. 38.
    Nassif N, Penney J, Pal S et al (1994) Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol Cell Biol 14:1613–1625PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Luis de Navas
    • 1
  • David Foronda
    • 1
    • 2
  • Delia del Saz
    • 1
  • Ernesto Sánchez-Herrero
    • 1
    Email author
  1. 1.Centro de Biología Molecular Severo Ochoa (CSIC-UAM)Universidad Autónoma de MadridMadridSpain
  2. 2.Institute of Molecular and Cell BiologySingaporeSingapore

Personalised recommendations