Skip to main content

Bimolecular Fluorescence Complementation (BiFC) in Live Drosophila Embryos

  • Protocol
  • First Online:
Hox Genes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1196))

Abstract

Bimolecular fluorescence complementation (BiFC) is a powerful method for studying protein-protein interactions in different cell types and organisms. This method was recently developed in the fruit fly Drosophila melanogaster, allowing analyzing protein interaction properties in a physiologically relevant developing context. Here we present a detailed protocol for performing BiFC with the Venus fluorescent protein in live Drosophila embryos, taking the Hox-PBC partnership as an illustrative test case. This protocol applies to any transcription factor and split fluorescent protein in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kerppola TK (2008) Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys 37:465–487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Kodama Y, Hu CD (2012) Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives. Biotechniques 53:285–298

    Article  CAS  PubMed  Google Scholar 

  3. Hu CD, Chinenov Y, Kerppola TK (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9:789–798

    Article  CAS  PubMed  Google Scholar 

  4. Shaner NC, Lambert GG, Chammas A, Ni Y, Cranfill PJ et al (2013) A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat Methods 10:407–409

    Article  CAS  PubMed  Google Scholar 

  5. Zhou J, Lin J, Zhou C, Deng X, Xia B (2011) An improved bimolecular fluorescence complementation tool based on superfolder green fluorescent protein. Acta Biochim Biophys Sin (Shanghai) 43:239–244

    Article  CAS  Google Scholar 

  6. Kim J, Zhao T, Petralia RS, Yu Y, Peng H et al (2012) mGRASP enables mapping mammalian synaptic connectivity with light microscopy. Nat Methods 9:96–102

    Article  CAS  Google Scholar 

  7. Shyu YJ, Liu H, Deng X, Hu CD (2006) Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. Biotechniques 40:61–66

    Article  CAS  PubMed  Google Scholar 

  8. Hudry B, Viala S, Graba Y, Merabet S (2011) Visualization of protein interactions in living Drosophila embryos by the bimolecular fluorescence complementation assay. BMC Biol 9:5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Bischof J, Maeda RK, Hediger M, Karch F, Basler K (2007) An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci U S A 104:3312–3317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Bischof J, Bjorklund M, Furger E, Schertel C, Taipale J et al (2013) A versatile platform for creating a comprehensive UAS-ORFeome library in Drosophila. Development 140: 2434–2442

    Article  CAS  PubMed  Google Scholar 

  11. Gohl C, Banovic D, Grevelhorster A, Bogdan S (2010) WAVE forms hetero- and homo-oligomeric complexes at integrin junctions in Drosophila visualized by bimolecular fluorescence complementation. J Biol Chem 285: 40171–40179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. de Navas L, Foronda D, Suzanne M, Sanchez-Herrero E (2006) A simple and efficient method to identify replacements of P-lacZ by P-Gal4 lines allows obtaining Gal4 insertions in the bithorax complex of Drosophila. Mech Dev 123:860–867

    Article  PubMed  Google Scholar 

  13. Gebelein B, Culi J, Ryoo HD, Zhang W, Mann RS (2002) Specificity of Distalless repression and limb primordia development by abdominal Hox proteins. Dev Cell 3: 487–498

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the ARC (Association pour la Recherche sur le Cancer), and FRM (Fondation pour la Recherche Médicale).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Merabet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Duffraisse, M., Hudry, B., Merabet, S. (2014). Bimolecular Fluorescence Complementation (BiFC) in Live Drosophila Embryos. In: Graba, Y., Rezsohazy, R. (eds) Hox Genes. Methods in Molecular Biology, vol 1196. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1242-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1242-1_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1241-4

  • Online ISBN: 978-1-4939-1242-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics