Hox Genes pp 255-278 | Cite as

SELEX-seq: A Method for Characterizing the Complete Repertoire of Binding Site Preferences for Transcription Factor Complexes

  • Todd R. Riley
  • Matthew Slattery
  • Namiko Abe
  • Chaitanya Rastogi
  • Dahong Liu
  • Richard S. MannEmail author
  • Harmen J. BussemakerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1196)


The closely related members of the Hox family of homeodomain transcription factors have similar DNA-binding preferences as monomers, yet carry out distinct functions in vivo. Transcription factors often bind DNA as multiprotein complexes, raising the possibility that complex formation might modify their DNA-binding specificities. To test this hypothesis we developed a new experimental and computational platform, termed SELEX-seq, to characterize DNA-binding specificities of Hox-based multiprotein complexes. We found that complex formation with the same cofactor reveals latent specificities that are not observed for monomeric Hox factors. The findings from this in vitro platform are consistent with in vivo data, and the “latent specificity” concept serves as a precedent for how the specificities of similar transcription factors might be distinguished in vivo. Importantly, the SELEX-seq platform is flexible and can be used to determine the relative affinities to any DNA sequence for any transcription factor or multiprotein complex.

Key words

Hox proteins Transcription factor specificity Extradenticle Pbx SELEX Next-generation sequencing Computational analysis 



We thank the members of the Bussemaker and Mann labs for comments and feedback during the course of these studies. This work was supported by NIH grants R01GM054510, R01HG003008, U54CA121852, and P50GM071508; a John Simon Guggenheim Foundation Fellowship; and Columbia University’s RISE program.


  1. 1.
    Hueber SD, Lohmann I (2008) Shaping segments: Hox gene function in the genomic age. Bioessays 30(10):965–979. doi: 10.1002/bies.20823 PubMedCrossRefGoogle Scholar
  2. 2.
    Young T, Deschamps J (2009) Hox, Cdx, and anteroposterior patterning in the mouse embryo. Curr Top Dev Biol 88:235–255. doi: 10.1016/S0070-2153(09)88008-3 PubMedCrossRefGoogle Scholar
  3. 3.
    Abramovich C, Humphries RK (2005) Hox regulation of normal and leukemic hematopoietic stem cells. Curr Opin Hematol 12(3):210–216PubMedCrossRefGoogle Scholar
  4. 4.
    Mann RS, Lelli KM, Joshi R (2009) Hox specificity unique roles for cofactors and collaborators. Curr Top Dev Biol 88:63–101. doi: 10.1016/S0070-2153(09)88003-4 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Conlon FL, Fairclough L, Price BM, Casey ES, Smith JC (2001) Determinants of T box protein specificity. Development 128(19):3749–3758PubMedGoogle Scholar
  6. 6.
    Jones S (2004) An overview of the basic helix-loop-helix proteins. Genome Biol 5(6):226. doi: 10.1186/gb-2004-5-6-226 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Hollenhorst PC, McIntosh LP, Graves BJ (2011) Genomic and biochemical insights into the specificity of ETS transcription factors. Annu Rev Biochem 80:437–471. doi: 10.1146/annurev.biochem.79.081507.103945 PubMedCrossRefGoogle Scholar
  8. 8.
    Joshi R, Passner JM, Rohs R, Jain R, Sosinsky A, Crickmore MA, Jacob V, Aggarwal AK, Honig B, Mann RS (2007) Functional specificity of a Hox protein mediated by the recognition of minor groove structure. Cell 131(3):530–543. doi: 10.1016/j.cell.2007.09.024 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Abu-Shaar M, Ryoo HD, Mann RS (1999) Control of the nuclear localization of Extradenticle by competing nuclear import and export signals. Genes Dev 13(8):935–945PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Slattery M, Riley T, Liu P, Abe N, Gomez-Alcala P, Dror I, Zhou T, Rohs R, Honig B, Bussemaker HJ, Mann RS (2011) Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Cell 147(6):1270–1282. doi: 10.1016/j.cell.2011.10.053 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510PubMedCrossRefGoogle Scholar
  12. 12.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822. doi: 10.1038/346818a0 PubMedCrossRefGoogle Scholar
  13. 13.
    Slattery M, Ma L, Negre N, White KP, Mann RS (2011) Genome-wide tissue-specific occupancy of the Hox protein Ultrabithorax and Hox cofactor Homothorax in Drosophila. PLoS One 6(4):e14686. doi: 10.1371/journal.pone.0014686 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Jolma A, Yan J, Whitington T, Toivonen J, Nitta KR, Rastas P, Morgunova E, Enge M, Taipale M, Wei G, Palin K, Vaquerizas JM, Vincentelli R, Luscombe NM, Hughes TR, Lemaire P, Ukkonen E, Kivioja T, Taipale J (2013) DNA-binding specificities of human transcription factors. Cell 152(1–2):327–339. doi: 10.1016/j.cell.2012.12.009 PubMedCrossRefGoogle Scholar
  15. 15.
    Levine HA, Nilsen-Hamilton M (2007) A mathematical analysis of SELEX. Comput Biol Chem 31(1):11–35. doi: 10.1016/j.compbiolchem.2006.10.002 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Gebelein B, Culi J, Ryoo HD, Zhang W, Mann RS (2002) Specificity of Distalless repression and limb primordia development by abdominal Hox proteins. Dev Cell 3(4):487–498PubMedCrossRefGoogle Scholar
  17. 17.
    Noro B, Lelli K, Sun L, Mann RS (2011) Competition for cofactor-dependent DNA binding underlies Hox phenotypic suppression. Genes Dev 25(22):2327–2332. doi: 10.1101/gad.175539.111 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Jolma A, Kivioja T, Toivonen J, Cheng L, Wei G, Enge M, Taipale M, Vaquerizas JM, Yan J, Sillanpaa MJ, Bonke M, Palin K, Talukder S, Hughes TR, Luscombe NM, Ukkonen E, Taipale J (2010) Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Res 20(6):861–873. doi: 10.1101/gr.100552.109 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Todd R. Riley
    • 1
    • 2
  • Matthew Slattery
    • 3
    • 4
  • Namiko Abe
    • 3
  • Chaitanya Rastogi
    • 1
    • 5
  • Dahong Liu
    • 1
  • Richard S. Mann
    • 3
    Email author
  • Harmen J. Bussemaker
    • 1
    Email author
  1. 1.Department of Biological SciencesColumbia UniversityNew YorkUSA
  2. 2.Department of BiologyUniversity of Massachusetts - BostonBostonUSA
  3. 3.Department of Biochemistry and Molecular BiophysicsColumbia University Medical CenterNew YorkUSA
  4. 4.Department of Biomedical SciencesUniversity of Minnesota Medical SchoolDuluthUSA
  5. 5.Department of Applied Physics and Applied MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations