Hox Genes pp 241-253 | Cite as

ChIP for Hox Proteins from Drosophila Imaginal Discs

  • Pavan Agrawal
  • L. S. ShashidharaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1196)


Chromatin immunoprecipitation (ChIP) is a technique that reveals in vivo location of a protein bound to DNA. ChIP coupled with DNA microarrays (ChIP-chip) or next-generation sequencing (ChIP-seq) allows for identification of binding sites of transcription factors on a global scale. Here we describe a protocol for ChIP to identify binding of the Ultrabithorax (Ubx) Hox transcription factors from imaginal discs of Drosophila larvae. The protocol can be extended to other model organisms and transcription factors.

Key words

Drosophila Ubx Hox GAGA factor Chromatin immunoprecipitation Wing Haltere Imaginal discs 



The authors thank R Mishra, R White, Y Graba, and members of LSS and R Mishra lab for help with experiments and discussion. We thank Council of Scientific and Industrial Research, India, for a fellowship to PA and Department of Atomic Energy and Department of Science and Technology (Government of India) for research grants to LSS.


  1. 1.
    Ren B, Robert F, Wyrick JJ et al (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309. doi: 10.1126/science.290.5500.2306 PubMedCrossRefGoogle Scholar
  2. 2.
    Iyer VR, Horak CE, Scafe CS et al (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409:533–538. doi: 10.1038/35054095 PubMedCrossRefGoogle Scholar
  3. 3.
    Wu J, Smith LT, Plass C, Huang TH-M (2006) ChIP-chip comes of age for genome-wide functional analysis. Cancer Res 66:6899–6902. doi: 10.1158/0008-5472.CAN-06-0276 PubMedCrossRefGoogle Scholar
  4. 4.
    Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680. doi: 10.1038/nrg2641 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Agrawal P, Habib F, Yelagandula R, Shashidhara LS (2011) Genome-level identification of targets of Hox protein Ultrabithorax in Drosophila: novel mechanisms for target selection. Sci Rep 1:1–10. doi: 10.1038/srep00205 CrossRefGoogle Scholar
  6. 6.
    Li X, MacArthur S, Bourgon R et al (2008) Transcription factors bind thousands of active and inactive regions in the Drosophila blastoderm. PLoS Biol 6:e27. doi: 10.1371/journal.pbio.0060027 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Negre N, Brown CD, Ma L et al (2011) A cis-regulatory map of the Drosophila genome. Nature 471:527–531. doi: 10.1038/nature09990 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Bonn S, Zinzen RP, Perez-Gonzalez A et al (2012) Cell type-specific chromatin immunoprecipitation from multicellular complex samples using BiTS-ChIP. Nat Protoc 7:978–994. doi: 10.1038/nprot.2012.049 PubMedCrossRefGoogle Scholar
  9. 9.
    Shankaranarayanan P, Walia M, Wang L et al (2011) Single-tube linear DNA amplification (LinDA) for robust ChiP-seq. Nat Methods 8:565–568. doi: 10.1038/nmeth.1626 PubMedCrossRefGoogle Scholar
  10. 10.
    Ng J-H, Kumar V, Muratani M et al (2013) In vivo epigenomic profiling of germ cells reveals germ cell molecular signatures. Dev Cell 24:324–333. doi: 10.1016/j.devcel.2012.12.011 PubMedCrossRefGoogle Scholar
  11. 11.
    Collas P (2009) Chromatin immunoprecipitation assays. In: Collas P (ed) Methods in molecular biology, 567th edn. Humana, Totowa, NJ, pp 1–25Google Scholar
  12. 12.
    Noyes MB, Christensen RG, Wakabayashi A et al (2008) Analysis of homeodomain specificities allows the family-wide prediction of preferred recognition sites. Cell 133:1277–1289, doi: Scholar
  13. 13.
    Slattery M, Ma L, Négre N et al (2011) Genome-wide tissue-specific occupancy of the Hox protein Ultrabithorax and Hox cofactor homothorax in Drosophila. PLoS One 6:e14686. doi: 10.1371/journal.pone.0014686 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Choo SW, White R, Russell S (2011) Genome-wide analysis of the binding of the Hox protein Ultrabithorax and the Hox cofactor homothorax in Drosophila. PLoS One 6:e14778. doi: 10.1371/journal.pone.0014778 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Hersh BM, Carroll SB (2005) Direct regulation of knot gene expression by Ultrabithorax and the evolution of cis-regulatory elements in Drosophila. Development 132:1567–1577. doi: 10.1242/dev.01737 PubMedCrossRefGoogle Scholar
  16. 16.
    Hersh BM, Nelson CE, Stoll SJ et al (2007) The UBX-regulated network in the haltere imaginal disc of D. melanogaster. Dev Biol 302:717–727. doi: 10.1016/j.ydbio.2006.11.011 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Makhijani K, Kalyani C, Srividya T, Shashidhara LS (2007) Modulation of Decapentaplegic gradient during haltere specification in Drosophila. Dev Biol 302:243–255. doi: 10.1016/j.ydbio.2006.09.029 PubMedCrossRefGoogle Scholar
  18. 18.
    Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. doi: 10.1373/clinchem.2008.112797 PubMedCrossRefGoogle Scholar
  19. 19.
    Manoonkitiwongsa PS, Schultz RL (2003) Proper nomenclature of formaldehyde and paraformaldehyde fixatives for histochemistry. Histochem J 34:365–367. doi: 10.1023/A:1023342929105 Google Scholar
  20. 20.
    Lee TI, Johnstone SE, Young RA (2006) Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protoc 1:729–748. doi:10.1038/nprot2006.98PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Indian Institute of Science Education & Research (IISER)Pashan, PuneIndia
  2. 2.Janelia Farm Research CampusHHMIAshburnUSA

Personalised recommendations