Skip to main content

Genetically Engineered Insertional Mutagenesis in Mice to Model Cancer: Sleeping Beauty

  • Protocol
  • First Online:
Book cover Mouse Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1194))

Abstract

The ability to accurately model human cancer in mice enables in vivo examination of the biological mechanisms related to cancer initiation and progression as well as preclinical testing of new anticancer treatments and potential targets. The emergence of the genetically engineered Sleeping Beauty system of insertional mutagenesis has led to the development of a new generation of genetic mouse models of cancer and identification of novel cancer-causing genes. This chapter reviews the published cancer models of Sleeping Beauty and strategies using available strains to generate several models of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collier LS, Carlson CM, Ravimohan S et al (2005) Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 436:272–276

    Article  CAS  PubMed  Google Scholar 

  2. Howell VM (2012) Sleeping beauty – a mouse model for all cancers? Cancer Lett 317:1–8

    Article  CAS  PubMed  Google Scholar 

  3. Ivics Z, Hackett PB, Plasterk RH et al (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501–510

    Article  CAS  PubMed  Google Scholar 

  4. Geurts AM, Collier LS, Geurts JL et al (2006) Gene mutations and genomic rearrangements in the mouse as a result of transposon mobilization from chromosomal concatemers. PLoS Genet 2:e156

    Article  PubMed Central  PubMed  Google Scholar 

  5. Collier LS, Adams DJ, Hackett CS et al (2009) Whole-body sleeping beauty mutagenesis can cause penetrant leukemia/lymphoma and rare high-grade glioma without associated embryonic lethality. Cancer Res 69:8429–8437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Dupuy AJ, Akagi K, Largaespada DA et al (2005) Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436:221–226

    Article  CAS  PubMed  Google Scholar 

  7. Dupuy AJ, Rogers LM, Kim J et al (2009) A modified sleeping beauty transposon system that can be used to model a wide variety of human cancers in mice. Cancer Res 69:8150–8156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Van Der Weyden L, Arends MJ, Rust AG et al (2012) Increased tumorigenesis associated with loss of the tumor suppressor gene Cadm1. Mol Cancer 11:29

    Article  PubMed Central  PubMed  Google Scholar 

  9. Van Der Weyden L, Papaspyropoulos A, Poulogiannis G et al (2012) Loss of RASSF1A synergizes with deregulated RUNX2 signaling in tumorigenesis. Cancer Res 72:3817–3827

    Article  PubMed Central  PubMed  Google Scholar 

  10. Perez-Mancera PA, Rust AG, Van Der Weyden L et al (2012) The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature 486:266–270

    CAS  PubMed Central  PubMed  Google Scholar 

  11. O'donnell KA, Keng VW, York B et al (2012) A Sleeping Beauty mutagenesis screen reveals a tumor suppressor role for Ncoa2/Src-2 in liver cancer. Proc Natl Acad Sci U S A 109:E1377–E1386

    Article  PubMed Central  PubMed  Google Scholar 

  12. Berquam-Vrieze KE, Nannapaneni K, Brett BT et al (2011) Cell of origin strongly influences genetic selection in a mouse model of T-ALL. Blood 118:4646–4656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Tang JZ, Carmichael CL, Shi W et al (2013) Transposon mutagenesis reveals cooperation of ETS family transcription factors with signaling pathways in erythro-megakaryocytic leukemia. Proc Natl Acad Sci U S A 110:6091–6096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Zanesi N, Balatti V, Riordan J et al (2013) A Sleeping Beauty screen reveals NF-kB activation in CLL mouse model. Blood 121:4355–4358

    Google Scholar 

  15. Keng VW, Villanueva A, Chiang DY et al (2009) A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. Nat Biotechnol 27:264–274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. March HN, Rust AG, Wright NA et al (2011) Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis. Nat Genet 43:1202–1209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Starr TK, Scott PM, Marsh BM et al (2011) A Sleeping Beauty transposon-mediated screen identifies murine susceptibility genes for adenomatous polyposis coli (Apc)-dependent intestinal tumorigenesis. Proc Natl Acad Sci U S A 108:5765–5770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Starr TK, Allaei R, Silverstein KA et al (2009) A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science 323:1747–1750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Mann KM, Ward JM, Yew CC et al (2012) Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma. Proc Natl Acad Sci U S A 109:5934–5941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Rahrmann EP, Watson AL, Keng VW et al (2013) Forward genetic screen for malignant peripheral nerve sheath tumor formation identifies new genes and pathways driving tumorigenesis. Nat Genet 45:756–766

    Google Scholar 

  21. Larson JD, Largaespada DA (2012) Review: in vivo models for defining molecular subtypes of the primitive neuroectodermal tumor genome: current challenges and solutions. In Vivo (Athens, Greece) 26:487–500

    CAS  PubMed Central  Google Scholar 

  22. Wu X, Northcott PA, Dubuc A et al (2012) Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature 482:529–533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Karreth FA, Tay Y, Perna D et al (2011) In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147:382–395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Quintana RM, Dupuy AJ, Bravo A et al (2013) A transposon-based analysis of gene mutations related to skin cancer development. J Invest Dermatol 133:239–248

    Article  CAS  PubMed  Google Scholar 

  25. Dupage M, Dooley AL, Jacks T (2009) Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc 4:1064–1072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Brett BT, Berquam-Vrieze KE, Nannapaneni K et al (2011) Novel molecular and computational methods improve the accuracy of insertion site analysis in Sleeping Beauty-induced tumors. PLoS One 6:e24668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Rawlins EL, Perl AK (2012) The a"MAZE"ing world of lung-specific transgenic mice. Am J Respir Cell Mol Biol 46:269–282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Jackson EL, Willis N, Mercer K et al (2001) Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15:3243–3248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Fasbender A, Lee JH, Walters RW et al (1998) Incorporation of adenovirus in calcium phosphate precipitates enhances gene transfer to airway epithelia in vitro and in vivo. J Clin Invest 102:184–193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Luo J, Deng ZL, Luo X et al (2007) A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc 2:1236–1247

    Article  CAS  PubMed  Google Scholar 

  31. Bender AM, Collier LS, Rodriguez FJ et al (2010) Sleeping beauty-mediated somatic mutagenesis implicates CSF1 in the formation of high-grade astrocytomas. Cancer Res 70:3557–3565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Largaespada DA, Collier LS (2008) Transposon-mediated mutagenesis in somatic cells: identification of transposon-genomic DNA junctions. Methods Mol Biol 435:95–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

V.M.H. is a Cancer Institute NSW South Wales (CINSW) Northern Translational Cancer Research Unit Fellow; E.K.C. is a CINSW Fellow. This work is supported by Cancer Council NSW and Cure Cancer Australia Foundation. Dr J. Grim and A. Knecht from the Fred Hutchinson Cancer Research Center are acknowledged for primer sequences for genotyping Rosa26SB11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viive M. Howell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Howell, V.M., Colvin, E.K. (2014). Genetically Engineered Insertional Mutagenesis in Mice to Model Cancer: Sleeping Beauty. In: Singh, S., Coppola, V. (eds) Mouse Genetics. Methods in Molecular Biology, vol 1194. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1215-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1215-5_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1214-8

  • Online ISBN: 978-1-4939-1215-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics