Skip to main content

Generation and Applications of MADM-Based Mouse Genetic Mosaic System

  • Protocol
  • First Online:
Mouse Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1194))

Abstract

Genetic mosaics describe organisms that contain cells with distinct genotypes related to somatic transposition, mitotic recombination, or genomic aberrations. Most, if not all, human cancers are genetic mosaics because cancer cells bear mutations that are absent in normal cells within the same body. While naturally occurring mutant cells in genetic mosaic animals are difficult to track down, a genetically engineered mosaic mouse model termed MADM (Mosaic Analysis with Double Markers) enables one to perform phenotypic analysis of mutant cells at single-cell resolution in vivo. While cancer modeling is the most obvious application, MADM is also highly suitable for studying developmental biology, neuroscience, and regenerative biology problems to investigate clonal contributions. Here we describe the construction of the MADM model on a specific chromosome through ES cell-based targeting of MADM cassettes into a pair of homologous chromosomes. We also detail procedures to verify the labeling efficiency of the newly established MADM model. Finally, we explain the breeding schemes and analytical principles that enable using MADM for in vivo phenotypic analysis at single-cell resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265:103–106

    Article  CAS  PubMed  Google Scholar 

  2. Zong H, Espinosa JS, Su HH, Muzumdar MD, Luo L (2005) Mosaic analysis with double markers in mice. Cell 121:479–492

    Article  CAS  PubMed  Google Scholar 

  3. Espinosa JS, Luo L (2008) Timing neurogenesis and differentiation: insights from quantitative clonal analyses of cerebellar granule cells. J Neurosci 28:2301–2312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Espinosa JS, Wheeler DG, Tsien RW, Luo L (2009) Uncoupling dendrite growth and patterning: single-cell knockout analysis of NMDA receptor 2B. Neuron 62:205–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hippenmeyer S, Youn YH, Moon HM, Miyamichi K, Zong H, Wynshaw-Boris A, Luo L (2010) Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration. Neuron 68:695–709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Muzumdar M, Luo L, Zong H (2007) Modeling sporadic loss of heterozygosity in mice by using mosaic analysis with double markers (MADM). Proc Natl Acad Sci U S A 104:4495–4500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Liu C, Sage JC, Miller MR, Verhaak RG, Hippenmeyer S, Vogel H, Foreman O, Bronson RT, Nishiyama A, Luo L et al (2011) Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146:209–221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hippenmeyer S, Johnson RL, Luo L (2013) Mosaic analysis with double markers reveals cell-type-specific paternal growth dominance. Cell Rep 3:960–967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Tasic B, Miyamichi K, Hippenmeyer S, Dani VS, Zeng H, Joo W, Zong H, Chen-Tsai Y, Luo L (2012) Extensions of MADM (mosaic analysis with double markers) in mice. PLoS One 7:e33332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Henner A, Ventura PB, Jiang Y, Zong H (2013) MADM-ML, a mouse genetic mosaic system with increased clonal efficiency. PLoS One 8:e77672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62

    Article  CAS  PubMed  Google Scholar 

  12. Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, Barker N, Klein AM, van Rheenen J, Simons BD et al (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143:134–144

    Article  CAS  PubMed  Google Scholar 

  13. Joyner A (2000) Gene targeting: a practical approach. Oxford University Press, New York, NY, p 293

    Google Scholar 

  14. Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y et al (2013) Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell 154:1380–1389

    Article  CAS  PubMed  Google Scholar 

  17. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Matei VA, Feng F, Pauley S, Beisel KW, Nichols MG, Fritzsch B (2006) Near-infrared laser illumination transforms the fluorescence absorbing X-Gal reaction product BCI into a transparent, yet brightly fluorescent substance. Brain Res Bull 70:33–43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

I thank Dr. Bernd Fritzsch for helpful comments on the manuscript. This work is partially supported by NIH/NCI grant R01-CA136495 and Department of Defense (DoD) Peer Reviewed Cancer Research Program (PRCRP) CA100469. HZ is Pew Scholar in Biomedical Sciences, supported by The Pew Charitable Trusts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zong, H. (2014). Generation and Applications of MADM-Based Mouse Genetic Mosaic System. In: Singh, S., Coppola, V. (eds) Mouse Genetics. Methods in Molecular Biology, vol 1194. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1215-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1215-5_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1214-8

  • Online ISBN: 978-1-4939-1215-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics