Skip to main content

Labelling Analysis for 13C MFA Using NMR Spectroscopy

  • Protocol
  • First Online:
Metabolic Flux Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1191))

Abstract

NMR spectroscopy is an efficient method for analyzing 13C labelling of cellular metabolites. The strength of it is especially the ability to provide direct quantitative positional information on the 13C labelling status of carbon atoms in metabolites. NMR spectroscopic methods allow also for detection of contiguously 13C-labelled fragments in the carbon backbones of the metabolites. Furthermore, the recent developments of NMR spectroscopy hardware have substantially improved the sensitivity of the methods. In this chapter we describe a method for analyzing the 13C labelling of the biomass amino acids for metabolic flux analysis, sample preparation for NMR spectroscopy, acquiring and processing the NMR spectra, and extracting the 13C labelling information from the NMR data. Different NMR methods are applied depending on the 13C labelling strategy chosen. These strategies include uniform 13C labelling, positional 13C labelling, or a combination of both. Not only the preparation of sample for analysis of 13C labelling in proteinogenic amino acids in biomass is described, but also the necessary modifications to the method when analysis of 13C labelling in free metabolic intermediates is of interest. Finally the strategies for using the different NMR-detected 13C labelling data in 13C MFA are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zamboni N et al (2009) (13)C-based metabolic flux analysis. Nat Protoc 4:878–892

    Article  CAS  PubMed  Google Scholar 

  2. Szyperski T (1995) Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur J Biochem 232:433–448

    Article  CAS  PubMed  Google Scholar 

  3. Massou S et al (2007) NMR-based fluxomics: quantitative 2D NMR methods for isotopomers analysis. Phytochemistry 68:16–18

    Article  Google Scholar 

  4. Sauer U (1999) Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J Bacteriol 181:6679–6688

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Fredlund E et al (2004) Oxygen- and glucose-dependent regulation of central carbon metabolism in Pichia anomala. Appl Environ Microbiol 70:5905–5911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Jouhten P et al (2008) Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A. BMC Syst Biol 2:60

    Article  PubMed Central  PubMed  Google Scholar 

  7. Jordà J et al (2012) Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures. Microb Cell Fact 11:57

    Article  PubMed Central  PubMed  Google Scholar 

  8. Rantanen A et al (2008) An analytic and systematic framework for estimating metabolic flux ratios from 13C tracer experiments. BMC Bioinformatics 9:266

    Article  PubMed Central  PubMed  Google Scholar 

  9. Wiechert W et al (2001) A universal framework for 13C metabolic flux analysis. Metab Eng 3:265–283

    Article  CAS  PubMed  Google Scholar 

  10. Costenoble R (2007) 13C-labeled metabolic flux analysis of a fed-batch culture of elutriated Saccharomyces cerevisiae. FEMS Yeast Res 7:511–526

    Article  CAS  PubMed  Google Scholar 

  11. Fan TW-M, Lane AN (2011) NMR-based stable isotope resolved metabolomics in systems biochemistry. J Biomol NMR 49:267–280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Bartek T (2011) Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum. Appl Environ Microbiol 77:6644–6652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Niklas J (2011) Metabolite channeling and compartmentation in the human cell line AGE1.HN determined by 13C labeling experiments and 13C metabolic flux analysis. J Biosci Bioeng 112:616–623

    Article  CAS  PubMed  Google Scholar 

  14. Schneider K (2012) The ethylmalonyl-CoA pathway is used in place of the glyoxylate cycle by Methylobacterium extorquens AM1 during growth on acetate. J Biol Chem 287:757–766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Sauer U et al (1997) Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nat Biotechnol 15:448–452

    Article  CAS  PubMed  Google Scholar 

  16. Maaheimo H et al (2001) Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional 13C labeling of common amino acids. Eur J Biochem 268:2464–2479

    Article  CAS  PubMed  Google Scholar 

  17. Fiaux J et al (2003) Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot Cell 2:170–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Solà A et al (2004) Amino acid biosynthesis and metabolic flux profiling of Pichia pastoris. Eur J Biochem 271:2462–2470

    Article  PubMed  Google Scholar 

  19. Solà A et al (2007) Metabolic flux profiling of Pichia pastoris grown on glycerol/methanol mixtures in chemostat cultures at low and high dilution rates. Microbiology 153:281–290

    Article  PubMed  Google Scholar 

  20. Jouhten P et al (2009) 13C-metabolic flux ratio and novel carbon path analyses confirmed that Trichoderma reesei uses primarily the respirative pathway also on the preferred carbon source glucose. BMC Syst Biol 3:104

    Article  PubMed Central  PubMed  Google Scholar 

  21. Fischer E, Zamboni N, Sauer U (2004) High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. Anal Biochem 325:308–316

    Article  CAS  PubMed  Google Scholar 

  22. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5:264–276

    Article  CAS  PubMed  Google Scholar 

  23. Quek LE et al (2009) OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis. Microb Cell Fact 8:25

    Article  PubMed Central  PubMed  Google Scholar 

  24. Gombert AK et al (2001) Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J Bacteriol 183:1441–1451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. van Gulik W (2010) Fast sampling for quantitative microbial metabolomics. Curr Opin Biotechnol 21:27–34

    Article  PubMed  Google Scholar 

  26. van Gulik WM et al (2012) Fast sampling of the cellular metabolome. Methods Mol Biol 881:279–306

    Article  PubMed  Google Scholar 

  27. Gonzalez B, Francois J, Renaud M (1997) A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 13:1347–1355

    Article  CAS  PubMed  Google Scholar 

  28. Hochuli H et al (1999) Amino acid biosynthesis in the halophilic archaeon Haloarcula hispanica. J Bacteriol 181:3226–3237

    CAS  PubMed Central  PubMed  Google Scholar 

  29. van Winden W et al (2001) Innovations in generation and analysis of 2D [(13)C, (1)H] COSY NMR spectra for metabolic flux analysis purposes. Metab Eng 3:322–343

    Article  PubMed  Google Scholar 

  30. Massou S et al (2007) Application of 2D-TOCSY NMR to the measurement of specific (13C-enrichments in complex mixtures of 13C-labeled metabolites. Metab Eng 9:252–257

    Article  CAS  PubMed  Google Scholar 

  31. Lane AN, Fan TW-M, Higashi RM (2008) Isotopomer-based metabolomic analysis by NMR and mass spectrometry. Methods Cell Biol 84:541–588

    Article  CAS  PubMed  Google Scholar 

  32. Fan TW-M, Lane AN (2011) NMR-based stable isotope resolved metabolomics in systems biochemistry. J Biomol NMR 49:267–280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Arita M (2003) In silico atomic tracing by substrate-product relationships in Escherichia coli intermediary metabolism. Genome Res 13:2455–2466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kanehisa M et al (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–D357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Heinonen M et al (2011) Computing atom mappings for biochemical reactions without subgraph isomorphism. J Comput Biol 18:43–58

    Article  CAS  PubMed  Google Scholar 

  36. Pitkänen E, Jouhten P, Rousu J (2009) Inferring branching pathways in genome-scale metabolic networks. BMC Syst Biol 3:103

    Article  PubMed Central  PubMed  Google Scholar 

  37. Zamboni N, Fischer E, Sauer U (2005) FiatFlux—a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinformatics 6:209

    Article  PubMed Central  PubMed  Google Scholar 

  38. Choi HS et al (2007) Incorporating metabolic flux ratios into constraint-based flux analysis by using artificial metabolites and converging ratio determinants. J Biotechnol 129:696–705

    Article  CAS  PubMed  Google Scholar 

  39. Becker SA et al (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2:727–738

    Article  CAS  PubMed  Google Scholar 

  40. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9:68–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Academy of Finland through the Centre of Excellence in White Biotechnology Green Chemistry (grant 118573). The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement number 222716—SMARTCELL. P.J. wants to acknowledge funding from the Academy of Finland for a postdoctoral researcher’s project (grant 140380).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannu Maaheimo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jouhten, P., Maaheimo, H. (2014). Labelling Analysis for 13C MFA Using NMR Spectroscopy. In: Krömer, J., Nielsen, L., Blank, L. (eds) Metabolic Flux Analysis. Methods in Molecular Biology, vol 1191. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1170-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1170-7_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1169-1

  • Online ISBN: 978-1-4939-1170-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics