Skip to main content

Simulating Tissue Morphogenesis and Signaling

  • Protocol
  • First Online:
Tissue Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1189))

Abstract

During embryonic development tissue morphogenesis and signaling are tightly coupled. It is therefore important to simulate both tissue morphogenesis and signaling simultaneously in in silico models of developmental processes. The resolution of the processes depends on the questions of interest. As part of this chapter we introduce different descriptions of tissue morphogenesi s. In the simplest approximation tissue is a continuous domain and tissue expansion is described according to a predefined function of time (and possibly space). In a slightly more advanced version the expansion speed and direction of the tissue may depend on a signaling variable that evolves on the domain. Both versions will be referred to as “prescribed growth.” Alternatively tissue can be regarded as incompressible fluid and can be described with Navier-Stokes equations. Local cell expansion, proliferation, and death are then incorporated by a source term. In other applications the cell boundaries may be important and cell-based models must be introduced. Finally, cells may move within the tissue, a process best described by agent-based models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iber D, Zeller R (2012) Making sense-data-based simulations of vertebrate limb development. Curr Opin Genet Dev 22:570–577

    Article  PubMed  CAS  Google Scholar 

  2. Donea J, Huerta A, Ponthot J, Rodriguez-Ferran A (2004) Arbitrary Lagrangian-Eulerian methods. In: Encyclopedia of computational mechanics. Wiley, New York, pp 1–38

    Google Scholar 

  3. Probst S, Kraemer C, Demougin P, Sheth R, Martin GR, Shiratori H, Hamada H, Iber D, Zeller R, Zuniga A (2011) SHH propagates distal limb bud development by enhancing CYP26B1-mediated retinoic acid clearance via AER-FGF signalling. Development 138:1913–1923

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Menshykau D, Kraemer C, Iber D (2012) Branch mode selection during early lung development. PLoS Comput Biol 8:e1002377

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Cellière G, Menshykau D, Iber D (2012) Simulations demonstrate a simple network to be sufficient to control branch point selection, smooth muscle and vasculature formation during lung branching morphogenesis. Biol Open 1:775–788

    Article  PubMed  PubMed Central  Google Scholar 

  6. Badugu A, Kraemer C, Germann P, Menshykau D, Iber D (2012) Digit patterning during limb development as a result of the BMP-receptor interaction. Sci Rep 2:991

    Article  PubMed  PubMed Central  Google Scholar 

  7. Germann P, Menshykau D, Tanaka S, Iber D (2011) Simulating organogenesis in COMSOL. Proceedings of COMSOL conference, pp 1–5

    Google Scholar 

  8. Menshykau D, Iber D (2012) Simulation organogenesis in COMSOL: deforming and interacting domains. Proceedings of COMSOL conference, Milan

    Google Scholar 

  9. Gregg CL, Butcher JT (2012) Quantitative in vivo imaging of embryonic development: opportunities and challenges. Differentiation 84:149–162

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Bookstein FL (1989) Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 11:567–585

    Article  Google Scholar 

  11. Forgacs G, Foty RA, Shafrir Y, Steinberg MS (1998) Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys J 74:2227–2234

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Chen S, Doolen GD (1998) Lattice Boltzmann methods for fluid flows. Annu Rev Fluid Mech 30:329–364

    Article  Google Scholar 

  13. Dillon R, Gadgil C, Othmer HG (2003) Short- and long-range effects of Sonic hedgehog in limb development. Proc Natl Acad Sci U S A 100:10152–10157

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Bittig T, Wartlick O, Kicheva A, González-Gaitán M, Jülicher F (2008) Dynamics of anisotropic tissue growth. New J Phys 10:063001

    Article  Google Scholar 

  15. Boehm B, Westerberg H, Lesnicar-Pucko G, Raja S, Rautschka M, Cotterell J, Swoger J, Sharpe J (2010) The role of spatially controlled cell proliferation in limb bud morphogenesis. PLoS Biol 8:e1000420

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dillon R, Owen M, Painter K (2000) A single-cell-based model of multicellular growth using the immersed boundary method. Contemporary Mathematics 466:1–15

    Article  Google Scholar 

  17. Rejniak KA, Kliman HJ, Fauci LJ (2004) A computational model of the mechanics of growth of the villous trophoblast bilayer. Bull Math Biol 66:199–232

    Article  PubMed  Google Scholar 

  18. Rejniak KA (2007) An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development. J Theor Biol 247:186–204

    Article  PubMed  CAS  Google Scholar 

  19. Peskin CS (2002) The immersed boundary method. Acta Numerica. 11:479–517

    Google Scholar 

  20. Rejniak KA, Anderson AR (2008) A computational study of the development of epithelial acini: I. Sufficient conditions for the formation of a hollow structure. Bull Math Biol 70:677–712

    Article  PubMed  Google Scholar 

  21. Rejniak KA, Anderson AR (2008) A computational study of the development of epithelial acini: II. Necessary conditions for structure and lumen stability. Bull Math Biol 70:1450–1479

    Article  PubMed  Google Scholar 

  22. Graner F, Glazier J (1992) Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett 69:2013–2016

    Article  PubMed  CAS  Google Scholar 

  23. Izaguirre JA, Chaturvedi R, Huang C et al (2004) CompuCell, a multi-model framework for simulation of morphogenesis. Bioinformatics (Oxford, England) 20:1129–1137

    Article  CAS  Google Scholar 

  24. Bauer AL, Beauchemin CAA, Perelson AS (2008) Agent-based modeling of host-pathogen systems: the successes and challenges. Inf Sci 179:1379–1389

    Article  Google Scholar 

  25. Meyer-Hermann ME, Maini PK, Iber D (2006) An analysis of B cell selection mechanisms in germinal centers. Math Med Biol 23:255–277

    Article  PubMed  Google Scholar 

  26. Thorne BC, Bailey AM, DeSimone DW, Peirce SM (2007) Agent-based modeling of multicell morphogenic processes during development. Birth Defects Res C Embryo Today 81:344–353

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Erkan Ünal, Javier Lopez-Rios, and Dario Speziale from the Zeller lab for the embryo picture in Fig. 1. The authors acknowledge funding from the SNF Sinergia grant “Developmental engineering of endochondral ossification from mesenchymal stem cells,” a SystemsX RTD on Forebrain Development, a SystemsX iPhD grant, and an ETH Zurich postdoctoral fellowship to D.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Iber Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Iber, D., Tanaka, S., Fried, P., Germann, P., Menshykau, D. (2015). Simulating Tissue Morphogenesis and Signaling. In: Nelson, C. (eds) Tissue Morphogenesis. Methods in Molecular Biology, vol 1189. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1164-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1164-6_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1163-9

  • Online ISBN: 978-1-4939-1164-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics