Skip to main content

Hemodynamic Flow Visualization of Early Embryonic Great Vessels Using μPIV

  • Protocol
  • First Online:
Tissue Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1189))

Abstract

Microparticle image velocimetry (μPIV) is an evolving quantitative methodology to closely and accurately monitor the cardiac flow dynamics and mechanotransduction during vascular morphogenesis. While PIV technique has a long history, contemporary developments in advanced microscopy have significantly expanded its power. This chapter includes three new methods for μPIV acquisition in selected embryonic structures achieved through advanced optical imaging: (1) high-speed confocal scanning of transgenic zebrafish embryos, where the transgenic erythrocytes act as the tracing particles; (2) microinjection of artificial seeding particles in chick embryos visualized with stereomicroscopy; and (3) real-time, time-resolved optical coherence tomography acquisition of vitelline vessel flow profiles in chick embryos, tracking the erythrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pekkan K, Keller BB (2013) Developmental fetal cardiovascular biomechanics in the 21st century: another tipping point. Cardiovasc Eng Technol 4:231–233

    Article  Google Scholar 

  2. Buskohl PR, Jenkins JT, Butcher JT (2012) Computational simulation of hemodynamic-driven growth and remodeling of embryonic atrioventricular valves. Biomech Model Mechanobiol 11:1205–1217

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kowalski WJ, Dur O, Wang Y, Patrick MJ, Tinney JP, Keller BB, Pekkan K (2013) Critical transitions in early embryonic aortic arch patterning and hemodynamics. PLoS One 8:e60271

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Oosterbaan AM, Ursem NT, Struijk PC, Bosch JG, van der Steen AF, Steegers EA (2009) Doppler flow velocity waveforms in the embryonic chicken heart at developmental stages corresponding to 5–8 weeks of human gestation. Ultrasound Obstet Gynecol 33:638–644

    Article  PubMed  CAS  Google Scholar 

  5. Gu S, Jenkins MW, Peterson LM, Doughman YQ, Rollins AM, Watanabe M (2012) Optical coherence tomography captures rapid hemodynamic responses to acute hypoxia in the cardiovascular system of early embryos. Dev Dyn 241:534–544

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Chen C, Menon PG, Kowalski W, Pekkan K (2013) Time-resolved OCT-μPIV: a new microscopic PIV technique for noninvasive depth-resolved pulsatile flow profile acquisition. Exp Fluids 54:1426

    Article  Google Scholar 

  7. Vennemann P, Kiger KT, Lindken R, Groenendijk BC, Stekelenburg-de Vos S, ten Hagen TL, Ursem NT, Poelmann RE, Westerweel J, Hierck BP (2006) In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart. J Biomech 39:1191–1200

    Article  PubMed  Google Scholar 

  8. Martinsen BJ (2005) Reference guide to the stages of chick heart embryology. Dev Dyn 233:1217–1237

    Article  PubMed  Google Scholar 

  9. Bakkers J (2011) Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res 91:279–288

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Manner J (2000) Cardiac looping in the chick embryo: a morphological review with special reference to terminological and biomechanical aspects of the looping process. Anat Rec 259:248–262

    Article  PubMed  CAS  Google Scholar 

  11. Chen CY, Patrick MJ, Corti P, Kowalski W, Roman BL, Pekkan K (2011) Analysis of early embryonic great-vessel microcirculation in zebrafish using high-speed confocal muPIV. Biorheology 48:305–321

    PubMed  Google Scholar 

  12. Corti P, Young S, Chen CY, Patrick MJ, Rochon ER, Pekkan K, Roman BL (2011) Interaction between alk1 and blood flow in the development of arteriovenous malformations. Development 138:1573–1582

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Westerfield M (2000) The Zebrafish book. University of Oregon Press, Eugene

    Google Scholar 

  14. Sepich DS, Wegner J, O’Shea S, Westerfield M (1998) An altered intron inhibits synthesis of the acetylcholine receptor alpha-subunit in the paralyzed zebrafish mutant nic1. Genetics 148:361–372

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Choi J, Dong L, Ahn J, Dao D, Hammerschmidt M, Chen JN (2007) FoxH1 negatively modulates flk1 gene expression and vascular formation in zebrafish. Dev Biol 304:735–744

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Traver D, Paw BH, Poss KD, Penberthy WT, Lin S, Zon LI (2003) Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol 4:1238–1246

    Article  PubMed  CAS  Google Scholar 

  17. Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  PubMed  CAS  Google Scholar 

  18. Patrick MJ, Chen C, Frakes DH, Dur O, Pekkan K (2011) Cellular-level near-wall unsteadiness of high-hematocrit erythrocyte flow using confocal μpIV. Exp Fluids 50:887–904

    Article  CAS  Google Scholar 

  19. Wagman AJ, Hu N, Clark EB (1990) Effect of changes in circulating blood volume on cardiac output and arterial and ventricular blood pressure in the stage 18, 24, and 29 chick embryo. Circ Res 67:187–192

    Article  PubMed  CAS  Google Scholar 

  20. Keane RD, Adrian RJ (1990) Optimization of particle image velocimeters. 1. Double pulsed systems. Meas Sci Technol 11:1202–1215

    Article  Google Scholar 

  21. Olsen MG, Adrian RJ (2000) Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry. Exp Fluids 29:S166–S174

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank funding provided through European Molecular Biology Organization (EMBO) Young Investigator Program and European Research Council 307460.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerem Pekkan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Goktas, S., Chen, CY., Kowalski, W.J., Pekkan, K. (2015). Hemodynamic Flow Visualization of Early Embryonic Great Vessels Using μPIV. In: Nelson, C. (eds) Tissue Morphogenesis. Methods in Molecular Biology, vol 1189. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1164-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1164-6_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1163-9

  • Online ISBN: 978-1-4939-1164-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics