Skip to main content

Investigating Human Vascular Tube Morphogenesis and Maturation Using Endothelial Cell-Pericyte Co-cultures and a Doxycycline-Inducible Genetic System in 3D Extracellular Matrices

  • Protocol
  • First Online:
Tissue Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1189))

Abstract

Considerable progress has occurred toward our understanding of the molecular basis for vascular morphogenesis, maturation, and stabilization. A major reason for this progress has been the development of novel in vitro systems to investigate these processes in 3D extracellular matrices. In this chapter, we present models of human endothelial cell (EC) tube formation and EC-pericyte tube co-assembly using serum-free defined conditions in 3D collagen matrices. We utilize both human venous and arterial ECs and show that both cell types readily form tubes and induce pericyte recruitment and both ECs and pericytes work together to remodel the extracellular matrix environment by assembling the vascular basement membrane, a key step in capillary tube network maturation and stabilization. Importantly, we have shown that these events occur under serum-free defined conditions using the hematopoietic stem cell cytokines, SCF, IL-3, and SDF-1α and also including FGF-2. In contrast, the combination of VEGF and FGF-2 fails to support vascular tube morphogenesis or pericyte-induced tube maturation under the same serum-free defined conditions. Furthermore, we present novel assays whereby we have developed both human ECs and pericytes to induce specific genes using a doxycycline-regulated lentiviral system. In this manner, we can upregulate the expression of wild-type or mutant gene products at any stage of vascular morphogenesis or maturation in 3D matrices. These in vitro experimental approaches will continue to identify key molecular requirements and signaling pathways that control fundamental events in tissue vascularization under normal or pathologic conditions. Furthermore, these models will provide new insights into the development of novel disease therapeutic approaches where vascularization is an important pathogenic component and create new ways to assemble capillary tube networks with associated pericytes for tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis GE (2012) Molecular regulation of vasculogenesis and angiogenesis: recent advances and future directions. In: Homeister JW, Willis MS (eds) Molecular and translational vascular medicine. Springer, New York, NY, pp 169–206

    Chapter  Google Scholar 

  2. Davis GE, Stratman AN, Sacharidou A, Koh W (2011) Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting. Int Rev Cell Mol Biol 288:101–165

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Davis GE, Stratman AN, Sacharidou A (2011) Molecular control of vascular tube morphogenesis and stabilization: Regulation by extracellular matrix, matrix metalloproteinases and endothelial cell-pericyte interactions. In: Gerecht S (ed) Biophysical regulation of vascular differentiation. Springer, New York, NY, pp 17–47

    Chapter  Google Scholar 

  4. Holderfield MT, Hughes CC (2008) Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circ Res 102:637–652

    Article  PubMed  CAS  Google Scholar 

  5. Nicosia RF, Zorzi P, Ligresti G, Morishita A, Aplin AC (2011) Paracrine regulation of angiogenesis by different cell types in the aorta ring model. Int J Dev Biol 55:447–453

    Article  PubMed  CAS  Google Scholar 

  6. Sacharidou A, Stratman AN, Davis GE (2012) Molecular mechanisms controlling vascular lumen formation in three-dimensional extracellular matrices. Cells Tissues Organs 195:122–143

    Article  PubMed  CAS  Google Scholar 

  7. Senger DR, Davis GE (2011) Angiogenesis. Cold Spring Harb Perspect Biol 3:a005090

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stratman AN, Davis GE (2012) Endothelial cell-pericyte interactions stimulate basement membrane matrix assembly: influence on vascular tube remodeling, maturation, and stabilization. Microsc Microanal 18:68–80

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Iruela-Arispe ML, Davis GE (2009) Cellular and molecular mechanisms of vascular lumen formation. Dev Cell 16:222–231

    Article  PubMed  CAS  Google Scholar 

  10. Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215

    Article  PubMed  CAS  Google Scholar 

  11. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8:464–478

    Article  PubMed  CAS  Google Scholar 

  12. Davis GE, Senger DR (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97:1093–1107

    Article  PubMed  CAS  Google Scholar 

  13. Xu K, Cleaver O (2011) Tubulogenesis during blood vessel formation. Semin Cell Dev Biol 22:993–1004

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Swift MR, Weinstein BM (2009) Arterial-venous specification during development. Circ Res 104:576–588

    Article  PubMed  CAS  Google Scholar 

  15. Hynes RO (2007) Cell-matrix adhesion in vascular development. J Thromb Haemost 5(Suppl 1):32–40

    Article  PubMed  CAS  Google Scholar 

  16. Astrof S, Hynes RO (2009) Fibronectins in vascular morphogenesis. Angiogenesis 12:165–175

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Saunders WB, Bohnsack BL, Faske JB et al (2006) Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J Cell Biol 175:179–191

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Stratman AN, Malotte KM, Mahan RD, Davis MJ, Davis GE (2009) Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114:5091–5101

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Stratman AN, Saunders WB, Sacharidou A et al (2009) Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3-dimensional collagen matrices. Blood 114:237–247

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Hammes HP (2005) Pericytes and the pathogenesis of diabetic retinopathy. Horm Metab Res 37(Suppl 1):39–43

    Article  PubMed  Google Scholar 

  21. Stratman AN, Schwindt AE, Malotte KM, Davis GE (2010) Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization. Blood 116:4720–4730

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Davis GE, Camarillo CW (1996) An alpha 2 beta 1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp Cell Res 224:39–51

    Article  PubMed  CAS  Google Scholar 

  23. Sacharidou A, Koh W, Stratman AN, Mayo AM, Fisher KE, Davis GE (2010) Endothelial lumen signaling complexes control 3D matrix-specific tubulogenesis through interdependent Cdc42- and MT1-MMP-mediated events. Blood 115(25):5259–5269

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Somanath PR, Ciocea A, Byzova TV (2009) Integrin and growth factor receptor alliance in angiogenesis. Cell Biochem Biophys 53:53–64

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Wang X, Harris RE, Bayston LJ, Ashe HL (2008) Type IV collagens regulate BMP signalling in Drosophila. Nature 455:72–77

    Article  PubMed  CAS  Google Scholar 

  27. Benjamin LE, Hemo I, Keshet E (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125:1591–1598

    PubMed  CAS  Google Scholar 

  28. Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 103:159–165

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Saunders WB, Bayless KJ, Davis GE (2005) MMP-1 activation by serine proteases and MMP-10 induces human capillary tubular network collapse and regression in 3D collagen matrices. J Cell Sci 118:2325–2340

    Article  PubMed  CAS  Google Scholar 

  30. Davis GE, Pintar Allen KA, Salazar R, Maxwell SA (2001) Matrix metalloproteinase-1 and −9 activation by plasmin regulates a novel endothelial cell-mediated mechanism of collagen gel contraction and capillary tube regression in three-dimensional collagen matrices. J Cell Sci 114:917–930

    PubMed  CAS  Google Scholar 

  31. Davis GE, Senger DR (2008) Extracellular matrix mediates a molecular balance between vascular morphogenesis and regression. Curr Opin Hematol 15:197–203

    Article  PubMed  CAS  Google Scholar 

  32. Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468:562–566

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Armulik A, Genove G, Mae M et al (2010) Pericytes regulate the blood–brain barrier. Nature 468:557–561

    Article  PubMed  CAS  Google Scholar 

  34. Koh W, Stratman AN, Sacharidou A, Davis GE (2008) In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods Enzymol 443:83–101

    Article  PubMed  CAS  Google Scholar 

  35. Nakatsu MN, Hughes CC (2008) An optimized three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol 443:65–82

    Article  PubMed  CAS  Google Scholar 

  36. Aplin AC, Fogel E, Zorzi P, Nicosia RF (2008) The aortic ring model of angiogenesis. Methods Enzymol 443:119–136

    Article  PubMed  CAS  Google Scholar 

  37. Stratman AN, Davis MJ, Davis GE (2011) VEGF and FGF prime vascular tube morphogenesis and sprouting directed by hematopoietic stem cell cytokines. Blood 117:3709–3719

    Article  PubMed  PubMed Central  Google Scholar 

  38. Smith AO, Bowers SLK, Stratman AN, Davis GE (2013) Hematopoietic stem cell cytokines and fibroblast growth factor-2 stimulate human endothelial cell-pericyte tube co-assembly in 3D fibrin matrices under serum-free defined conditions. PLoS One 8(12):e85147

    Article  PubMed  PubMed Central  Google Scholar 

  39. Stratman AN, Kim DJ, Sacharidou A, Speichinger KR, Davis GE (2012) Methodologic approaches to investigate vascular tube morphogenesis and maturation events in 3D extracellular matrices in vitro and in vivo. In: Zudaire E, Cuttitta F (eds) The textbook of angiogenesis and lymphangiogenesis: methods and applications. Springer, Netherlands, pp 101–126

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George E. Davis M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bowers, S.L.K., Meng, CX., Davis, M.T., Davis, G.E. (2015). Investigating Human Vascular Tube Morphogenesis and Maturation Using Endothelial Cell-Pericyte Co-cultures and a Doxycycline-Inducible Genetic System in 3D Extracellular Matrices. In: Nelson, C. (eds) Tissue Morphogenesis. Methods in Molecular Biology, vol 1189. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1164-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1164-6_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1163-9

  • Online ISBN: 978-1-4939-1164-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics