Skip to main content

Regulatory B Cells, Helminths, and Multiple Sclerosis

  • Protocol
  • First Online:
Regulatory B Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1190))

Abstract

Multiple sclerosis (MS) is an inflammatory demyelinating disease affecting the central nervous system. Autoimmunity appears to play a key role in both susceptibility to MS and development of disease, and pathogenesis has been linked to defects in distinct regulatory cell subsets. B cells are known for their capacity to produce antibodies. Recent advances in B cell biology, however, have demonstrated that regulatory B cells, a functional subset of B cells, contribute to tolerance development. Regulatory B cells were originally described in mouse autoimmunity and inflammation models where they dampen inflammation, but have also been found in several helminth infection models. We recently demonstrated that helminth-infected MS patients show a significantly lower clinical and radiological disease activity. Parasite-driven protection was associated with regulatory T cell induction and secretion of suppressive cytokines such as IL-10 and TGF-β. In addition, helminth infections in MS patients induced regulatory B cell populations producing high levels of IL-10, dampening harmful immune responses through a mechanism mediated, at least in part, by the ICOS-B/RP-1 pathway. More importantly, production of IL-10 by B cells in this study was restricted to helminth-infected individuals exclusively.

The first part of this chapter will detail the criteria used in this study for selection of helminth-infected MS patients, MS patients without infection, and patients infected with Trypanosoma cruzi. Methods for isolation of peripheral blood CD19+ cells and in particular for their stimulation with heat-inactivated Staphylococcus aureus Cowan strain, CDw32L cells, and CD40 antibody will also be described in detail. Finally, we will illustrate the procedures used to analyze phenotypic surface markers on these cells and characterize them in terms of IL-4, IL-6, IL-10, TNF-α, lymphotoxin, and TGF-β secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McFarland HF, Martin R (2007) Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol 8:913–919

    Article  CAS  PubMed  Google Scholar 

  2. Gold R, Linington C, Lassmann H (2006) Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129:1953–1971

    Article  PubMed  Google Scholar 

  3. Disanto G, Morahan JM, Barnett MH et al (2012) The evidence for a role of B cells in multiple sclerosis. Neurology 78:823–832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Martin F, Chan AC (2004) Pathogenic roles of B cells in human autoimmunity: insights from the clinic. Immunity 20:517–527

    Article  CAS  PubMed  Google Scholar 

  5. Constant SL (1999) B lymphocytes as antigen-presenting cells for CD4+ T cell priming in vivo. J Immunol 162:5695–5703

    CAS  PubMed  Google Scholar 

  6. Mizoguchi A, Mizoguchi E, Takedatsu H et al (2002) Chronic intestinal inflammatory conditions generates IL-10 producing regulatory B cells subset characterized by CD1d upregulation. Immunity 16:219–230

    Article  CAS  PubMed  Google Scholar 

  7. Evans JG, Chavez-Rueda KA, Eddaudi A et al (2007) Novel suppressive function of translational 2 B cells in experimental arthritis. J Immunol 178:7868–7878

    Article  CAS  PubMed  Google Scholar 

  8. Fillatreau S, Sweenie CH, McGeachy MJ et al (2002) B cells regulate autoimmunity by provision of IL-10. Nat Immunol 3:944–950

    Article  CAS  PubMed  Google Scholar 

  9. Mauri C, Gray D, Mushtaq N et al (2003) Prevention of arthritis by interleukin 10-producing B cells. J Exp Med 197:489–501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Wolf SD, Dittel BN, Hardadottir F et al (1996) Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J Exp Med 184:2271–2278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Matsushita T, Yanaba K, Bouaziz J-D et al (2008) Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J Clin Invest 118:3420–3430

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Matsushita T, Horikawa M, Iwata Y et al (2010) Regulatory B cells (B10 cells) and regulatory T cells have independent roles in controlling experimental autoimmune encephalomyelitis initiation and late-phase immunopathogenesis. J Immunol 185:2240–2252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Duddy M, Niino M, Adatia F et al (2007) Distinct effector cytokine profiles of memory and naïve human B cell subsets and implication in multiple sclerosis. J Immunol 178:6092–6099

    Article  CAS  PubMed  Google Scholar 

  14. Bach JF (2002) The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 347:911–920

    Article  PubMed  Google Scholar 

  15. La Flamme AC, Ruddenklau K, Bäckström BT (2003) Schistosomiasis decreases central nervous inflammation and alters the progression of experimental autoimmune encephalomyelitis. Infect Immun 71:4996–5004

    Article  PubMed Central  PubMed  Google Scholar 

  16. Sewell D, Qing Z, Reinke E et al (2003) Immunomodulation of experimental autoimmune encephalomyelitis by helminth ova immunization. Int Immunol 15:59–69

    Article  CAS  PubMed  Google Scholar 

  17. Zaccone P, Fehérvári Z, Jones FM et al (2003) Schistosoma mansoni antigens modulate the activity of the innate immune response and prevent onset of type 1 diabetes. Eur J Immunol 33:1439–1449

    Article  CAS  PubMed  Google Scholar 

  18. Elliott DE, Li J, Blum A et al (2003) Exposure to schistosome eggs protects mice from TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol 284:G385–G391

    CAS  PubMed  Google Scholar 

  19. Palanivel V, Posey C, Horauf AC et al (1996) B-cell outgrowth and ligand-specific production of IL-10 correlate with Th2 dominance in certain parasitic diseases. Exp Parasitol 84:168–177

    Article  CAS  PubMed  Google Scholar 

  20. Guillan V, Lawrence RA, Devaney E (2005) B cells play a regulatory role in mice infected with the L3 of Brugia pahangi. Int Immunol 17:373–382

    Article  Google Scholar 

  21. Ronet C, Hauyon-La Torre Y, Revaz-Breton M et al (2010) Regulatory B cells shape the development of Th2 immune responses in BALB/c mice infected with Leishmania major through IL-10 production. J Immunol 184:886–894

    Article  CAS  PubMed  Google Scholar 

  22. van der Vlugt LEPM, Labuda LA, Ozir-Fazalalikhan A et al (2012) Schistosomes induce regulatory features in human and mouse CD1d hi B cells: Inhibition of allergic inflammation by IL-10 and regulatory T cells. PloS One 7:e30883

    Article  PubMed Central  PubMed  Google Scholar 

  23. Correale J, Farez M (2007) Association between parasite infection and immune responses in multiple sclerosis. Ann Neurol 61:97–108

    Article  CAS  PubMed  Google Scholar 

  24. Correale J, Farez MF (2011) The impact of parasite infections on the course of multiple sclerosis. J Neuroimmunol 233:6–11

    Article  CAS  PubMed  Google Scholar 

  25. Correale J, Farez M, Razzitte G (2008) Helminth infections associated with multiple sclerosis induce regulatory B cells. Ann Neurol 64:187–199

    Article  PubMed  Google Scholar 

  26. Brooks DG, Qiu WQ, Luster AD et al (1989) Structure and expression of human IgG FcRII (CD32). J Exp Med 170:1369–1385

    Article  CAS  PubMed  Google Scholar 

  27. Peltz GA, Trounstine ML, Moore KW (1988) Cloned and expressed human Fc receptors for IgG mediates anti-CD3-dependent lymphoproliferation. J Immunol 141:1891–1896

    CAS  PubMed  Google Scholar 

  28. Prussin C, Metcalfe DD (1995) Detection of intracytoplasmic cytokine using flow cytometry and directly conjugated anti-cytokine antibodies. J Immunol Methods 188:117–128

    Article  CAS  PubMed  Google Scholar 

  29. McMAnus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Correale M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Correale, J., Equiza, T.R. (2014). Regulatory B Cells, Helminths, and Multiple Sclerosis. In: Vitale, G., Mion, F. (eds) Regulatory B Cells. Methods in Molecular Biology, vol 1190. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1161-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1161-5_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1160-8

  • Online ISBN: 978-1-4939-1161-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics