Skip to main content

Identification of Novel Protein Functions and Signaling Mechanisms by Genetics and Quantitative Phosphoproteomics in Caenorhabditis elegans

  • Protocol
  • First Online:
Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)

Abstract

Stable isotope labeling by amino acids combined with mass spectrometry is a widely used methodology for measuring relative changes in protein and phosphorylation levels at a global level. We have applied this method to the model organism Caenorhabditis elegans in combination with RNAi-mediated gene knockdown by feeding the nematode on pre-labeled lysine auxotroph Escherichia coli. In this chapter, we describe in details the generation of the E. coli strain, incorporation of heavy isotope-labeled lysine in C. elegans, and the procedure for a comprehensive global phosphoproteomic experiment.

Julius Fredens and Kasper Engholm-Kelle have equally contributed to this Chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiang H, English AM (2002) Quantitative analysis of the yeast proteome by incorporation of isotopically labeled leucine. J Proteome Res 1:345–350

    Article  CAS  PubMed  Google Scholar 

  2. Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  3. Gruhler A, Olsen JV, Mohammed S et al (2005) Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 4:310–327

    Article  CAS  PubMed  Google Scholar 

  4. Sury MD, Chen JX, Selbach M (2010) The SILAC fly allows for accurate protein quantification in vivo. Mol Cell Proteomics 9:2173–2183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Gruhler A, Schulze WX, Matthiesen R et al (2005) Stable isotope labeling of Arabidopsis thaliana cells and quantitative proteomics by mass spectrometry. Mol Cell Proteomics 4:1697–1709

    Article  CAS  PubMed  Google Scholar 

  6. Kruger M, Moser M, Ussar S et al (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134:353–364

    Article  PubMed  Google Scholar 

  7. Fredens J, Engholm-Keller K, Giessing A et al (2011) Quantitative proteomics by amino acid labeling in C. elegans. Nat Methods 8:845–847

    Article  CAS  PubMed  Google Scholar 

  8. Larance M, Bailly AP, Pourkarimi E et al (2011) Stable-isotope labeling with amino acids in nematodes. Nat Methods 8:849–851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Van Gilst MR, Hadjivassiliou H, Jolly A et al (2005) Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans. PLoS Biol 3:e53

    Article  PubMed Central  PubMed  Google Scholar 

  10. Larsen MR, Thingholm TE, Jensen ON et al (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886

    Article  CAS  PubMed  Google Scholar 

  11. Pinkse MW, Uitto PM, Hilhorst MJ et al (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76:3935–3943

    Article  CAS  PubMed  Google Scholar 

  12. Kuroda I, Shintani Y, Motokawa M et al (2004) Phosphopeptide-selective column-switching RP-HPLC with a titania precolumn. Anal Sci 20:1313–1319

    Article  CAS  PubMed  Google Scholar 

  13. Thingholm TE, Jensen ON, Robinson PJ et al (2008) SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics 7:661–671

    Article  CAS  PubMed  Google Scholar 

  14. Babitzke P, Grange L, Olszewski J et al (1993) Analysis of mRNA decay and rRNA processing in Escherichia coli multiple mutants carrying a deletion in RNase III. J Bacteriol 175:229–239

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Deutsch EW, Mendoza L, Shteynberg D et al (2010) A guided tour of the Trans-Proteomic Pipeline. Proteomics 10:1150–1159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  17. Engholm-Keller K, Birck P, Storling J et al (2012) TiSH—a robust and sensitive global phosphoproteomics strategy employing a combination of TiO2, SIMAC, and HILIC. J Proteomics 75:5749–5761

    Article  CAS  PubMed  Google Scholar 

  18. Krijgsveld J, Ketting RF, Mahmoudi T et al (2003) Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat Biotechnol 21:927–931

    Article  CAS  PubMed  Google Scholar 

  19. Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143

    Article  CAS  PubMed  Google Scholar 

  20. Van Hoof D, Pinkse MW, Oostwaard DW et al (2007) An experimental correction for arginine-to-proline conversion artifacts in SILAC-based quantitative proteomics. Nat Methods 4:677–678

    Article  PubMed  Google Scholar 

  21. Bicho CC, de Lima Alves F, Chen ZA et al (2010) A genetic engineering solution to the “arginine conversion problem” in stable isotope labeling by amino acids in cell culture (SILAC). Mol Cell Proteomics 9:1567–1577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Park SK, Liao L, Kim JY et al (2009) A computational approach to correct arginine-to-proline conversion in quantitative proteomics. Nat Methods 6:184–185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Coute Y, Hernandez C, Appel RD et al (2007) Labeling of Bifidobacterium longum cells with 13C-substituted leucine for quantitative proteomic analyses. Appl Environ Microbiol 73:5653–5656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by The Lundbeck Foundation and The Danish Council for Independent Research, Natural Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin Røssel Larsen or Nils J. Færgeman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fredens, J., Engholm-Keller, K., Møller-Jensen, J., Larsen, M.R., Færgeman, N.J. (2014). Identification of Novel Protein Functions and Signaling Mechanisms by Genetics and Quantitative Phosphoproteomics in Caenorhabditis elegans . In: Warscheid, B. (eds) Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC). Methods in Molecular Biology, vol 1188. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1142-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1142-4_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1141-7

  • Online ISBN: 978-1-4939-1142-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics