Skip to main content

Analysis of Secreted Proteins Using SILAC

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1188))

Abstract

Secreted proteins serve a crucial role in the communication between cells, tissues, and organs. Proteins released to the extracellular environment exert their function either locally or at distant points of the organism. Proteins are secreted in a highly dynamic fashion by cells and tissues in the body responding to the stimuli and requirements presented by the extracellular milieu. Characterization of secretomes derived from various cell types has been performed using different quantitative mass spectrometry-based proteomics strategies, several of them taking advantage of labeling with stable isotopes. Here, we describe the use of Stable Isotope Labeling by Amino acids in Cell culture (SILAC) for the quantitative analysis of the skeletal muscle secretome during myogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Clamp M, Fry B, Kamal M et al (2007) Distinguishing protein-coding and noncoding genes in the human genome. Proc Natl Acad Sci U S A 104:19428–19433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Skalnikova H, Motlik J, Gadher SJ et al (2011) Mapping of the secretome of primary isolates of mammalian cells, stem cells and derived cell lines. Proteomics 11:691–708

    Article  CAS  PubMed  Google Scholar 

  3. Lehr S, Hartwig S, Sell H (2012) Adipokines: a treasure trove for the discovery of biomarkers for metabolic disorders. Proteomics Clin Appl 6:91–101

    Article  CAS  PubMed  Google Scholar 

  4. Pavlou MP, Diamandis EP (2010) The cancer cell secretome: a good source for discovering biomarkers? J Proteomics 73:1896–1906

    Article  CAS  PubMed  Google Scholar 

  5. Herder C, Karakas M, Koenig W (2011) Biomarkers for the prediction of type 2 diabetes and cardiovascular disease. Clin Pharmacol Ther 90:52–66

    Article  CAS  PubMed  Google Scholar 

  6. Brown KJ, Formolo CA, Seol H et al (2012) Advances in the proteomic investigation of the cell secretome. Expert Rev Proteomics 9:337–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kratchmarova I, Kalume DE, Blagoev B et al (2002) A proteomic approach for identification of secreted proteins during the differentiation of 3T3-L1 preadipocytes to adipocytes. Mol Cell Proteomics 1:213–222

    Article  CAS  PubMed  Google Scholar 

  8. Chan XC, McDermott JC, Siu KW (2007) Identification of secreted proteins during skeletal muscle development. J Proteome Res 6:698–710

    Article  CAS  PubMed  Google Scholar 

  9. Molina H, Yang Y, Ruch T et al (2009) Temporal profiling of the adipocyte proteome during differentiation using a five-plex SILAC based strategy. J Proteome Res 8:48–58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Henningsen J, Rigbolt KT, Blagoev B et al (2010) Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol Cell Proteomics 9:2482–2496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Makridakis M, Vlahou A (2010) Secretome proteomics for discovery of cancer biomarkers. J Proteomics 73:2291–2305

    Article  CAS  PubMed  Google Scholar 

  12. Walther TC, Mann M (2010) Mass spectrometry-based proteomics in cell biology. J Cell Biol 190:491–500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Schulze WX, Usadel B (2010) Quantitation in mass-spectrometry-based proteomics. Annu Rev Plant Biol 61:491–516

    Article  CAS  PubMed  Google Scholar 

  14. Zhong J, Krawczyk SA, Chaerkady R et al (2010) Temporal profiling of the secretome during adipogenesis in humans. J Proteome Res 9:5228–5238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kovanich D, Cappadona S, Raijmakers R et al (2012) Applications of stable isotope dimethyl labeling in quantitative proteomics. Anal Bioanal Chem 404(4):991–1009

    Article  CAS  PubMed  Google Scholar 

  16. Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  17. Ong SE (2012) The expanding field of SILAC. Anal Bioanal Chem 404(4):967–976

    Article  CAS  PubMed  Google Scholar 

  18. Rigbolt KT, Blagoev B (2012) Quantitative phosphoproteomics to characterize signaling networks. Sem Cell Dev Biol 23(8):863–871

    Article  CAS  Google Scholar 

  19. Kirchner M, Selbach M (2012) In vivo quantitative proteome profiling: planning and evaluation of SILAC experiments. Methods Mol Biol 893:175–199

    Article  CAS  PubMed  Google Scholar 

  20. Henningsen J, Pedersen BK, Kratchmarova I (2011) Quantitative analysis of the secretion of the MCP family of chemokines by muscle cells. Mol Biosyst 7:311–321

    Article  CAS  PubMed  Google Scholar 

  21. Chen CY, Chi LM, Chi HC et al (2012) Stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics study of a thyroid hormone-regulated secretome in human hepatoma cells. Mol Cell Proteomics 11(M111):011270

    PubMed  Google Scholar 

  22. Kashyap MK, Harsha HC, Renuse S et al (2010) SILAC-based quantitative proteomic approach to identify potential biomarkers from the esophageal squamous cell carcinoma secretome. Cancer Biol Ther 10:796–810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Greco TM, Seeholzer SH, Mak A et al (2010) Quantitative mass spectrometry-based proteomics reveals the dynamic range of primary mouse astrocyte protein secretion. J Proteome Res 9:2764–2774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lamoureux F, Gastinel LN, Mestre E et al (2012) Mapping cyclosporine-induced changes in protein secretion by renal cells using stable isotope labeling with amino acids in cell culture (SILAC). J Proteomics 75:3674–3687

    Article  CAS  PubMed  Google Scholar 

  25. An E, Gordish-Dressman H, Hathout Y (2008) Effect of TNF-alpha on human ARPE-19-secreted proteins. Mol Vis 14:2292–22303

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Blagoev B, Ong SE, Kratchmarova I et al (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol 22:1139–1145

    Article  CAS  PubMed  Google Scholar 

  27. Lundby A, Olsen JV (2011) GeLCMS for in-depth protein characterization and advanced analysis of proteomes. Methods Mol Biol 753:143–155

    Article  CAS  PubMed  Google Scholar 

  28. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906

    Article  CAS  PubMed  Google Scholar 

  29. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  30. Cox J, Neuhauser N, Michalski A et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805

    Article  CAS  PubMed  Google Scholar 

  31. Hittel DS, Berggren JR, Shearer J et al (2009) Increased secretion and expression of myostatin in skeletal muscle from extremely obese women. Diabetes 58:30–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Pelosi L, Giacinti C, Nardis C et al (2007) Local expression of IGF-1 accelerates muscle regeneration by rapidly modulating inflammatory cytokines and chemokines. FASEB J 21:1393–1402

    Article  CAS  PubMed  Google Scholar 

  33. Kristensen LP, Chen L, Nielsen MO et al (2012) Temporal profiling and pulsed SILAC labeling identify novel secreted proteins during ex vivo osteoblast differentiation of human stromal stem cells. Mol Cell Proteomics 11(10):989–1007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Henningsen J, Blagoev B, Kratchmarova I (2012) Quantitative proteomics for investigation of secreted factors: focus on muscle secretome. In: Flores RJ, Man TK (eds) Proteomics - human diseases and protein functions. InTech, Rijeka, Croatia, pp 417–438

    Google Scholar 

  35. Ong SE, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1:2650–2660

    Article  CAS  PubMed  Google Scholar 

  36. Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406

    Article  CAS  PubMed  Google Scholar 

  37. Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8:457–465

    Article  CAS  PubMed  Google Scholar 

  38. Yoon JH, Yea K, Kim J et al (2009) Comparative proteomic analysis of the insulin-induced L6 myotube secretome. Proteomics 9:51–60

    Article  CAS  PubMed  Google Scholar 

  39. Yoon JH, Song P, Jang JH et al (2011) Proteomic analysis of tumor necrosis factor-alpha (TNF-alpha)-induced L6 myotube secretome reveals novel TNF-alpha-dependent myokines in diabetic skeletal muscle. J Proteome Res 10:5315–5325

    Article  PubMed  Google Scholar 

  40. Olsen JV, Ong SE, Mann M (2004) Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics 3:608–614

    Article  CAS  PubMed  Google Scholar 

  41. Ong SE, Kratchmarova I, Mann M (2003) Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res 2:173–181

    Article  CAS  PubMed  Google Scholar 

  42. Barrell D, Dimmer E, Huntley RP et al (2009) The GOA database in 2009 – an integrated Gene Ontology Annotation resource. Nucleic Acids Res 37:D396–D403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Binns D, Dimmer E, Huntley R et al (2009) QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics 25:3045–3046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Bendtsen JD, Nielsen H, von Heijne G et al (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  45. Emanuelsson O, Brunak S, von Heijne G et al (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  CAS  PubMed  Google Scholar 

  46. Petersen TN, Brunak S, von Heijne G et al (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  47. Bendtsen JD, Jensen LJ, Blom N et al (2004) Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17:349–356

    Article  CAS  PubMed  Google Scholar 

  48. Hiller K, Grote A, Scheer M et al (2004) PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res 32:W375–W379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all CEBI group members for useful discussions. This work was supported by funding obtained from the Novo Nordisk Foundation, the Lundbeck Foundation, and the Augustinus Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Kratchmarova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Henningsen, J., Blagoev, B., Kratchmarova, I. (2014). Analysis of Secreted Proteins Using SILAC. In: Warscheid, B. (eds) Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC). Methods in Molecular Biology, vol 1188. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1142-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1142-4_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1141-7

  • Online ISBN: 978-1-4939-1142-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics