Skip to main content

Identification and Validation of Protein-Protein Interactions by Combining Co-immunoprecipitation, Antigen Competition, and Stable Isotope Labeling

  • Protocol
  • First Online:
Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1188))

Abstract

Co-immunoprecipitation (coIP) in combination with mass spectrometry (MS) is a powerful tool to identify potential protein-protein interactions. However, unspecifically precipitated proteins usually result in large numbers of false-positive identifications. Here we describe a detailed protocol particularly useful in plant sciences that is based on 15N stable isotope labeling of cells, 14N antigen titration, and coIP/MS to distinguish true from false protein-protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Markham K, Bai Y, Schmitt-Ulms G (2007) Co-immunoprecipitations revisited: an update on experimental concepts and their implementation for sensitive interactome investigations of endogenous proteins. Anal Bioanal Chem 389:461–473

    Article  CAS  PubMed  Google Scholar 

  2. ten Have S, Boulon S, Ahmad Y et al (2011) Mass spectrometry-based immuno-precipitation proteomics - the user’s guide. Proteomics 11:1153–1159

    Article  PubMed Central  PubMed  Google Scholar 

  3. Heide H, Nordhues A, Drepper F et al (2009) Application of quantitative immunoprecipitation combined with knockdown and cross-linking to Chlamydomonas reveals the presence of vesicle-inducing protein in plastids 1 in a common complex with chloroplast HSP90C. Proteomics 9:3079–3089

    Article  CAS  PubMed  Google Scholar 

  4. Schmollinger S, Strenkert D, Offeddu V et al. (2012) A protocol for the identification of protein-protein interactions based on 15N metabolic labeling, immunoprecipitation, quantitative mass spectrometry and affinity modulation. J Vis Exp 67, pii: 4083

    Google Scholar 

  5. Selbach M, Mann M (2006) Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK). Nat Methods 3:981–983

    Article  CAS  PubMed  Google Scholar 

  6. Rigaut G, Shevchenko A, Rutz B et al (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030–1032

    Article  CAS  PubMed  Google Scholar 

  7. Wan LK, Chen N, Klemmer P et al (2012) Identifying true protein complex constituents in interaction proteomics: the example of the DMXL2 protein complex. Proteomics 12:2428–2432

    Article  Google Scholar 

  8. Paul FE, Hosp F, Selbach M (2011) Analyzing protein-protein interactions by quantitative mass spectrometry. Methods 54:387–395

    Article  CAS  PubMed  Google Scholar 

  9. Ong SE, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1:2650–2660

    Article  CAS  PubMed  Google Scholar 

  10. Engelsberger WR, Erban A, Kopka J et al (2006) Metabolic labeling of plant cell cultures with K(15)NO3 as a tool for quantitative analysis of proteins and metabolites. Plant Methods 2:14

    Article  PubMed Central  PubMed  Google Scholar 

  11. Schroda M, Vallon O, Wollman FA et al (1999) A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. Plant Cell 11:1165–1178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Harris EH (2008) The Chlamydomonas sourcebook: introduction to Chlamydomonas and its laboratory use, vol 1, 2nd edn. Elsevier, San Diego, CA

    Google Scholar 

  13. Willmund F, Schroda M (2005) HEAT SHOCK PROTEIN 90C is a bona fide Hsp90 that interacts with plastidic HSP70B in Chlamydomonas reinhardtii. Plant Physiol 138:2310–2322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Mühlhaus T, Weiss J, Hemme D et al (2011) Quantitative shotgun proteomics using a uniform 15N-labeled standard to monitor proteome dynamics in time course experiments reveals new insights into the heat stress response of Chlamydomonas reinhardtii. Mol Cell Proteomics 10(M110):004739

    PubMed  Google Scholar 

  15. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  16. Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75:663–670

    Article  CAS  PubMed  Google Scholar 

  17. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  18. Cox J, Neuhauser N, Michalski A et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805

    Article  CAS  PubMed  Google Scholar 

  19. Mortensen P, Gouw JW, Olsen JV et al (2010) MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. J Proteome Res 9:393–403

    Article  CAS  PubMed  Google Scholar 

  20. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. W.H. Freeman, New York, NY

    Google Scholar 

  21. Van Hoof D, Pinkse MW, Oostwaard DW et al (2007) An experimental correction for arginine-to-proline conversion artifacts in SILAC-based quantitative proteomics. Nat Methods 4:677–678

    Article  PubMed  Google Scholar 

  22. Naumann B, Busch A, Allmer J et al (2007) Comparative quantitative proteomics to investigate the remodeling of bioenergetic pathways under iron deficiency in Chlamydomonas reinhardtii. Proteomics 7:3964–3979

    Article  CAS  PubMed  Google Scholar 

  23. Naumann B, Stauber EJ, Busch A et al (2005) N-terminal processing of Lhca3 Is a key step in remodeling of the photosystem I-light-harvesting complex under iron deficiency in Chlamydomonas reinhardtii. J Biol Chem 280:20431–20441

    Article  CAS  PubMed  Google Scholar 

  24. Terashima M, Specht M, Naumann B et al (2010) Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics. Mol Cell Proteomics 9:1514–1532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Ghaemmaghami S, Huh WK, Bower K et al (2003) Global analysis of protein expression in yeast. Nature 425:737–741

    Article  CAS  PubMed  Google Scholar 

  26. Liu C, Willmund F, Golecki JR et al (2007) The chloroplast HSP70B-CDJ2-CGE1 chaperones catalyse assembly and disassembly of VIPP1 oligomers in Chlamydomonas. Plant J 50:265–277

    Article  CAS  PubMed  Google Scholar 

  27. Eng J, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  CAS  PubMed  Google Scholar 

  28. Perkins DN, Pappin DJ, Creasy DM et al (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  CAS  PubMed  Google Scholar 

  29. Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20:1466–1467

    Article  CAS  PubMed  Google Scholar 

  30. Li XJ, Zhang H, Ranish JA et al (2003) Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry. Anal Chem 75:6648–6657

    Article  CAS  PubMed  Google Scholar 

  31. Schroda M, Vallon O, Whitelegge JP et al (2001) The chloroplastic GrpE homolog of Chlamydomonas: two isoforms generated by differential splicing. Plant Cell 13:2823–2839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Deutsche For-schungsgemeinschaft (Schr 617/5-1) and the Bundesministerium für Bildung und Forschung (Systems Biology Initiative FORSYS, project GoFORSYS), and by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schroda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sommer, F., Mühlhaus, T., Hemme, D., Veyel, D., Schroda, M. (2014). Identification and Validation of Protein-Protein Interactions by Combining Co-immunoprecipitation, Antigen Competition, and Stable Isotope Labeling. In: Warscheid, B. (eds) Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC). Methods in Molecular Biology, vol 1188. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1142-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1142-4_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1141-7

  • Online ISBN: 978-1-4939-1142-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics