Skip to main content

Monitoring Notch Activity in the Mouse

  • Protocol
  • First Online:
Book cover Notch Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1187))

Abstract

Several laboratories have developed genetic methods to monitor Notch activity in developing and adult mice. These approaches have been useful in identifying Notch signaling with high temporal and spatial resolution. This research has contributed substantially to our understanding of the role of Notch in cell specification and cellular physiology. Here, we present two protocols to monitor Notch activity in the mouse brain: (1) by intraventricular electroporation and (2) by intracranial viral injections of Notch reporter constructs. These methods allow monitoring of Notch signaling in specific brain regions from development to adulthood. In addition, using the appropriate modifications, the Notch reporter systems can also be used to monitor Notch activity in other organs of the mouse such as retina, skin, skeletal muscle, and cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Guruharsha KG, Kankel MW, Artavanis-Tsakonas S (2012) The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet 13:654–666

    Article  CAS  PubMed  Google Scholar 

  3. Lathia JD, Mattson MP, Cheng A (2008) Notch: from neural development to neurological disorders. J Neurochem 107:1471–1481

    Article  CAS  PubMed  Google Scholar 

  4. Souilhol C, Cormier S, Monet M et al (2006) Nas transgenic mouse line allows visualization of Notch pathway activity in vivo. Genesis 44:277–286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Mizutani K, Yoon K, Dang L et al (2007) Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 449:351–355

    Article  CAS  PubMed  Google Scholar 

  6. Nowotschin S, Xenopoulos P, Schrode N et al (2013) A bright single-cell resolution live imaging reporter of Notch signaling in the mouse. BMC Dev Biol 13:15

    Article  PubMed Central  PubMed  Google Scholar 

  7. Ishibashi M, Moriyoshi K, Sasai Y et al (1994) Persistent expression of helix-loop-helix factor HES-1 prevents mammalian neural differentiation in the central nervous system. EMBO J 13:1799–1805

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Shimizu K, Chiba S, Saito T et al (2002) Functional diversity among Notch1, Notch2, and Notch3 receptors. Biochem Biophys Res Commun 291:775–779

    Article  CAS  PubMed  Google Scholar 

  9. Ohtsuka T, Imayoshi I, Shimojo H et al (2006) Visualization of embryonic neural stem cells using Hes promoters in transgenic mice. Mol Cell Neurosci 31:109–122

    Article  CAS  PubMed  Google Scholar 

  10. Masamizu Y, Ohtsuka T, Takashima Y et al (2006) Real-time imaging of the somite segmentation clock: Revelation of unstable oscillators in the individual presomitic mesoderm cells. Proc Natl Acad Sci U S A 103:1313–1318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Vilas-Boas F, Fior R, Swedlow JR et al (2011) A novel reporter of notch signalling indicates regulated and random Notch activation during vertebrate neurogenesis. BMC Biol 9:58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Vooijs M, Ong CT, Hadland B et al (2007) Mapping the consequence of Notch1 proteolysis in vivo with NIP-CRE. Development 134:535–544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Smith E, Claudinot S, Lehal R et al (2012) Generation and characterization of a Notch1 signaling-specific reporter mouse line. Genesis 50:700–710

    CAS  PubMed  Google Scholar 

  14. Ilagan MX, Lim S, Fulbright M et al (2011) Real-time imaging of Notch activation using a luciferase complementation-based reporter. Sci Signal 4:rs7

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109

    CAS  PubMed  Google Scholar 

  16. Gradinaru V, Thompson KR, Deisseroth K (2008) eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 36:129–139

    PubMed Central  PubMed  Google Scholar 

  17. Maillard I, Weng AP, Carpenter AC et al (2004) Mastermind critically regulates Notch-mediated lymphoid cell fate decisions. Blood 104:1696–1702

    CAS  PubMed  Google Scholar 

  18. Aschauer DF, Kreuz S, Rumpel S (2013) Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One 8:e76310

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Fernández ME, Croce S, Boutin C et al (2011) Targeted electroporation of defined lateral ventricular walls: a novel and rapid method to study fate specification during postnatal forebrain neurogenesis. Neural Dev 6:13

    PubMed Central  PubMed  Google Scholar 

  20. Tanigaki K, Han H, Yamamoto N et al (2002) Notch-RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nat Immunol 3:443–450

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Nicholas Gaiano and Kenichi Mizutani for allowing us to reprint one of their results and for helping with the intraventricular electroporation technique. We would also like to thank Mauro Giacca and Lorena Zentilin for packaging the AAVs. This work is supported by the Swiss National Foundation, the Synapsis Foundation for Alzheimer’s Research, and Swiss Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lavinia Alberi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Marathe, S., Alberi, L. (2014). Monitoring Notch Activity in the Mouse. In: Bellen, H., Yamamoto, S. (eds) Notch Signaling. Methods in Molecular Biology, vol 1187. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1139-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1139-4_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1138-7

  • Online ISBN: 978-1-4939-1139-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics