Skip to main content

Gene Expression Profiling of Hematopoietic Stem Cells (HSCs)

  • Protocol
  • First Online:
Hematopoietic Stem Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1185))

  • 4751 Accesses

Abstract

Transcriptomic analysis to decipher the molecular phenotype of hematopoietic stem cells, regulatory mechanisms directing their life cycle, and the molecular signals mediating proliferation, mobilization, migration, and differentiation is believed to unravel disease-specific disturbances in hematological diseases and assist in the development of novel cell-based clinical therapies in this era of genomic medicine. The recent advent in genomic tools and technologies is now enabling the study of such comprehensive transcriptional characterization of cell types in a robust and successful manner. This chapter describes detailed protocols for isolating RNA from purified population of hematopoietic cells and gene expression profiling of those purified cells using both microarrays (Affymetrix) and RNA-Seq technology (Illumina Platform).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Esrefoglu M (2013) Role of stem cells in repair of liver injury: experimental and clinical benefit of transferred stem cells on liver failure. World J Gastroenterol 19:6757–6773

    Article  PubMed Central  PubMed  Google Scholar 

  2. Weiss DJ (2013) Stem cells, cell therapies and bioengineering in lung biology and diseases: comprehensive review of the recent literature 2010–2012. Ann Am Thorac Soc 10:S45–S97

    Article  PubMed  Google Scholar 

  3. Volk SW, Theoret C (2013) Translating stem cell therapies: the role of companion animals in regenerative medicine. Wound Repair Regen 21:382–394

    Article  PubMed Central  PubMed  Google Scholar 

  4. Preda MB, Valen G (2013) Evaluation of gene and cell-based therapies for cardiac regeneration. Curr Stem Cell Res Ther 8:304–312

    Article  CAS  PubMed  Google Scholar 

  5. Hansson EM, Lendahl U (2013) Regenerative medicine for the treatment of heart disease. J Intern Med 273:235–245

    Article  CAS  PubMed  Google Scholar 

  6. Szkolnicka D, Zhou W, Lucendo-Villarin B, Hay DC (2013) Pluripotent stem cell-derived hepatocytes: potential and challenges in pharmacology. Annu Rev Pharmacol Toxicol 53: 147–159

    Article  CAS  PubMed  Google Scholar 

  7. Cohen KS, Cheng S, Larson MG et al (2013) Circulating CD34(+) progenitor cell frequency is associated with clinical and genetic factors. Blood 121:e50–e56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Bentzinger CF, Wang YX, von Maltzahn J, Rudnicki MA (2012) The emerging biology of muscle stem cells: implications for cell-based therapies. Bioessays 35:231–241

    Article  PubMed Central  PubMed  Google Scholar 

  9. Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495:231–235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Miao W, Xufeng R, Park MR et al (2013) Hematopoietic stem cell regeneration enhanced by ectopic expression of ROS-detoxifying enzymes in transplant mice. Mol Ther 21: 423–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Geiger H, de Haan G, Florian MC (2002) The ageing haematopoietic stem cell compartment. Nat Rev Immunol 13:376–389

    Article  Google Scholar 

  12. Liu P, Barb J, Woodhouse K, Taylor JG, Munson PJ, Raghavachar N (2011) Transcriptome profiling and sequencing of differentiated human hematopoietic stem cells reveal lineage-specific expression and alternative splicing of genes. Physiol Genomics 43:1117–1134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Rieger MA, Schroeder T (2012) Hematopoiesis. Cold Spring Harb Perspect Biol 4:pii:a008250

    Article  Google Scholar 

  14. Cain CJ, Manilay JO (2012) Hematopoietic stem cell fate decisions are regulated by Wnt antagonists: comparisons and current controversies. Exp Hematol 41:3–16

    Article  PubMed  Google Scholar 

  15. Seke Etet PF, Vecchio L, Bogne Kamga P, Nchiwan Nukenine E, Krampera M, Nwabo Kamdje AH (2012) Normal hematopoiesis and hematologic malignancies: role of canonical Wnt signaling pathway and stromal microenvironment. Biochim Biophys Acta 1835:1–10

    PubMed  Google Scholar 

  16. Sood R, Liu P (2012) Novel insights into the genetic controls of primitive and definitive hematopoiesis from zebrafish models. Adv Hematol 2012:830703

    PubMed Central  PubMed  Google Scholar 

  17. Zhan Y, Xu Y, Lew AM (2012) The regulation of the development and function of dendritic cell subsets by GM-CSF: more than a hematopoietic growth factor. Mol Immunol 52:30–37

    Article  CAS  PubMed  Google Scholar 

  18. Tsujioka T, Matsuoka A, Tohyama Y, Tohyama K (2012) Approach to new therapeutics: investigation by the use of MDS-derived cell lines. Curr Pharm Des 18:3204–3214

    Article  CAS  PubMed  Google Scholar 

  19. Nagasawa T (2012) Regulation of immune cell production by bone marrow niches]. Seikagaku 84:163–167

    CAS  PubMed  Google Scholar 

  20. Kokkaliaris KD, Loeffler D, Schroeder T (2012) Advances in tracking hematopoiesis at the single-cell level. Curr Opin Hematol 19:243–249

    Article  PubMed  Google Scholar 

  21. Rappold I, Ziegler BL, Kohler I et al (1997) Functional and phenotypic characterization of cord blood and bone marrow subsets expressing FLT3 (CD135) receptor tyrosine kinase. Blood 90:111–125

    CAS  PubMed  Google Scholar 

  22. McNiece I, Briddell R, Stoney G et al (1997) Large-scale isolation of CD34+ cells using the Amgen cell selection device results in high levels of purity and recovery. J Hematother 6:5–11

    Article  CAS  PubMed  Google Scholar 

  23. Hicks C, Wong R, Manoharan A, Kwan YL (2007) Viable CD34+/CD133+ blood progenitor cell dose as a predictor of haematopoietic engraftment in multiple myeloma patients undergoing autologous peripheral blood stem cell transplantation. Ann Hematol 86: 591–598

    Article  CAS  PubMed  Google Scholar 

  24. El-Badri NS, Hakki A, Saporta S et al (2006) Cord blood mesenchymal stem cells: Potential use in neurological disorders. Stem Cells Dev 15:497–506

    Article  CAS  PubMed  Google Scholar 

  25. Gao Z, Fackler MJ, Leung W et al (2001) Human CD34+ cell preparations contain over 100-fold greater NOD/SCID mouse engrafting capacity than do CD34− cell preparations. Exp Hematol 29:910–921

    Article  CAS  PubMed  Google Scholar 

  26. Riviere C, Subra F, Cohen-Solal K et al (1999) Phenotypic and functional evidence for the expression of CXCR4 receptor during megakaryocytopoiesis. Blood 93:1511–1523

    CAS  PubMed  Google Scholar 

  27. Huss R (1996) Applications of hematopoietic stem cells and gene transfer. Infusionsther Transfusionsmed 23:147–160

    CAS  PubMed  Google Scholar 

  28. Sutherland DR, Yeo EL, Stewart AK et al (1996) Identification of CD34+ subsets after glycoprotease selection: engraftment of CD34+Thy-1+Lin− stem cells in fetal sheep. Exp Hematol 24:795–806

    CAS  PubMed  Google Scholar 

  29. Jensen K, Brusletto BS, Aass HC, Olstad OK, Kierulf P, Gautvik KM (2013) Transcriptional profiling of mRNAs and microRNAs in human bone marrow precursor B cells identifies subset- and age-specific variations. PLoS One 8:e70721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Liu F, Lu J, Fan HH et al (2006) Insights into human CD34+ hematopoietic stem/progenitor cells through a systematically proteomic survey coupled with transcriptome. Proteomics 6: 2673–2692

    Article  CAS  PubMed  Google Scholar 

  31. Eckfeldt CE, Mendenhall EM, Flynn CM et al (2005) Functional analysis of human hematopoietic stem cell gene expression using zebrafish. PLoS Biol 3:e254

    Article  PubMed Central  PubMed  Google Scholar 

  32. McKinney-Freeman S, Cahan P, Li H et al (2012) The transcriptional landscape of hematopoietic stem cell ontogeny. Cell Stem Cell 11:701–714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Gabut M (2012) Alternative splicing: a new mechanism controlling stem cell pluripotency. Med Sci (Paris) 28:372–374

    Article  Google Scholar 

  34. Kramer S (2011) Developmental regulation of gene expression in the absence of transcriptional control: the case of kinetoplastids. Mol Biochem Parasitol 181:61–72

    Article  PubMed  Google Scholar 

  35. Raghavachari N, Barb J, Yang Y et al (2012) A systematic comparison and evaluation of high density exon arrays and RNA-seq technology used to unravel the peripheral blood transcriptome of sickle cell disease. BMC Med Genomics 5:28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kandpal RP, Rajasimha HK, Brooks MJ et al (2012) Transcriptome analysis using next generation sequencing reveals molecular signatures of diabetic retinopathy and efficacy of candidate drugs. Mol Vis 18:1123–1146

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Driver AM, Penagaricano F, Huang W et al (2013) RNA-Seq analysis uncovers transcriptomic variations between morphologically similar in vivo- and in vitro-derived bovine blastocysts. BMC Genomics 13:118

    Article  Google Scholar 

  38. Hackett NR, Butler MW, Shaykhiev R et al (2012) RNA-Seq quantification of the human small airway epithelium transcriptome. BMC Genomics 13:82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. McGettigan PA (2013) Transcriptomics in the RNA-seq era. Curr Opin Chem Biol 17: 4–11

    Article  CAS  PubMed  Google Scholar 

  41. Vijay N, Poelstra JW, Kunstner A, Wolf JB (2012) Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments. Mol Ecol 22:620–634

    Article  PubMed  Google Scholar 

  42. Tariq MA, Kim HJ, Jejelowo O, Pourmand N (2011) Whole-transcriptome RNAseq analysis from minute amount of total RNA. Nucleic Acids Res 39:e120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the Genomics Core Facility in intramural research in NHLBI and the extramural research program in NIA for their support and resources during the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalini Raghavachari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Raghavachari, N. (2014). Gene Expression Profiling of Hematopoietic Stem Cells (HSCs). In: Bunting, K., Qu, CK. (eds) Hematopoietic Stem Cell Protocols. Methods in Molecular Biology, vol 1185. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1133-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1133-2_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1132-5

  • Online ISBN: 978-1-4939-1133-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics