Skip to main content

Lentiviral Gene Transduction of Mouse and Human Hematopoietic Stem Cells

  • Protocol
  • First Online:
Hematopoietic Stem Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1185))

Abstract

Lentiviral vectors can be used to genetically modify a broad range of cells. Hematopoietic stem cells (HSCs) are particularly suitable for lentiviral gene augmentation, because these cells can be enriched with relative ease from mouse bone marrow and human hematopoietic sources, and in principle require relatively limited cell numbers to completely reconstitute the hematopoietic system in vivo. Furthermore, lentiviral vectors are very efficient if pseudotyped with broad tropism envelope proteins. This chapter focuses on gene modification by the use of self-inactivating third-generation human immunodeficiency virus-derived lentiviral vectors for ex vivo HSC modification for both mouse and human application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    Article  CAS  PubMed  Google Scholar 

  2. Kafri T, Blomer U, Peterson DA, Gage FH, Verma IM (1997) Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat Genet 17:314–317

    Article  CAS  PubMed  Google Scholar 

  3. van Til NP, Stok M, Aerts Kaya FS, de Waard MC, Farahbakhshian E, Visser TP et al (2010) Lentiviral gene therapy of murine hematopoietic stem cells ameliorates the Pompe disease phenotype. Blood 115:5329–5337

    Article  PubMed  Google Scholar 

  4. Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C et al (2006) Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 24:687–696

    Article  CAS  PubMed  Google Scholar 

  5. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Guenechea G, Gan OI, Inamitsu T, Dorrell C, Pereira DS, Kelly M et al (2000) Transduction of human CD34+ CD38- bone marrow and cord blood-derived SCID-repopulating cells with third-generation lentiviral vectors. Mol Ther 1:566–573

    Article  CAS  PubMed  Google Scholar 

  7. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L et al (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Miyoshi H, Smith KA, Mosier DE, Verma IM, Torbett BE (1999) Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 283:682–686

    Article  CAS  PubMed  Google Scholar 

  9. Logan AC, Haas DL, Kafri T, Kohn DB (2004) Integrated self-inactivating lentiviral vectors produce full-length genomic transcripts competent for encapsidation and integration. J Virol 78:8421–8436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. van Til NP, de Boer H, Mashamba N, Wabik A, Huston M, Visser TP et al (2012) Correction of murine Rag2 severe combined immunodeficiency by lentiviral gene therapy using a codon-optimized RAG2 therapeutic transgene. Mol Ther 20:1968–1980

    Article  PubMed Central  PubMed  Google Scholar 

  11. Huston MW, van Til NP, Visser TP, Arshad S, Brugman MH, Cattoglio C et al (2011) Correction of murine SCID-X1 by lentiviral gene therapy using a codon-optimized IL2RG gene and minimal pretransplant conditioning. Mol Ther 19:1867–1877, Research Support, Non-U.S. Gov’t

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F, Plati T et al (2013) Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 341:1233158

    Article  PubMed  Google Scholar 

  13. Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C et al (2013) Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 341:233151

    Article  Google Scholar 

  14. Sirven A, Pflumio F, Zennou V, Titeux M, Vainchenker W, Coulombel L et al (2000) The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. Blood 96:4103–4110

    CAS  PubMed  Google Scholar 

  15. Zufferey R, Donello JE, Trono D, Hope TJ (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73:2886–2892

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Schambach A, Bohne J, Baum C, Hermann FG, Egerer L, von Laer D et al (2006) Woodchuck hepatitis virus post-transcriptional regulatory element deleted from X protein and promoter sequences enhances retroviral vector titer and expression. Gene Ther 13:641–645

    Article  CAS  PubMed  Google Scholar 

  17. Schambach A, Bohne J, Chandra S, Will E, Margison GP, Williams DA et al (2006) Equal potency of gammaretroviral and lentiviral SIN vectors for expression of O6-methylguanine-DNA methyltransferase in hematopoietic cells. Mol Ther 13:391–400

    Article  CAS  PubMed  Google Scholar 

  18. Hildinger M, Eckert HG, Schilz AJ, John J, Ostertag W, Baum C (1998) FMEV vectors: both retroviral long terminal repeat and leader are important for high expression in transduced hematopoietic cells. Gene Ther 5:1575–1579

    Article  CAS  PubMed  Google Scholar 

  19. van Til NP, Markusic DM, van der Rijt R, Kunne C, Hiralall JK, Vreeling H et al (2005) Kupffer cells and not liver sinusoidal endothelial cells prevent lentiviral transduction of hepatocytes. Mol Ther 11:26–34

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission’s 5th, 6th, and 7th Framework Programs, Contracts QLK3-CT-2001-00427-INHERINET, LSHB-CT-2004-005242-CONSERT, 222878-PERSIST, and 261387-CELL-PID, and by the Netherlands Organization for Health Research ZonMW, program grants 431-00-016 and 434-00-010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Wagemaker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

van Til, N.P., Wagemaker, G. (2014). Lentiviral Gene Transduction of Mouse and Human Hematopoietic Stem Cells. In: Bunting, K., Qu, CK. (eds) Hematopoietic Stem Cell Protocols. Methods in Molecular Biology, vol 1185. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1133-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1133-2_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1132-5

  • Online ISBN: 978-1-4939-1133-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics