Skip to main content

Intravital Imaging of Hematopoietic Stem Cells in the Mouse Skull

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1185))

Abstract

Over the past 50 years, much insight has been gained into the biology of hematopoietic stem cells (HSCs). Much of this information has been gained though isolation of specific bone marrow populations, and transplantation into irradiated recipients followed by characterization of chimeras months later. These studies have yielded insights into the function of HSCs, but have shed little light on the interactions of individual stem cells with their environment. Characterization of the behavior of single HSCs awaited the use of relatively noninvasive intravital microscopy, which allows one to identify rare cells in real time and follow them in multiple imaging sessions. Here we describe techniques used to image transplanted HSCs in the mouse calvarium using hybrid confocal/multi-photon microscopy and second harmonic imaging. For detection, fluorescently tagged HSCs are transplanted into a recipient mouse. The architecture of the bone marrow can be delineated using a combination of fluorescent probes and vascular dyes, second harmonic generation to detect the collagen signal from bone, and transgenic recipient mice containing specific fluorescent support cell populations.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sutherland HJ, Lansdorp PM, Henkelman DH, Eaves AC, Eaves CJ (1990) Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc Natl Acad Sci U S A 87:3584–3588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222

    Article  CAS  PubMed  Google Scholar 

  3. Nilsson SK, Johnston HM, Covedale JA (2001) Spatial localization of transplanted hematopoietic stem cells: inferences for the localizarion of stem cell niches. Blood 97:2293–2299

    Article  CAS  PubMed  Google Scholar 

  4. Kiel MJ, Yilmez OH, Iwahita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121

    Article  CAS  PubMed  Google Scholar 

  5. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109:625–637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Avecilla ST, Hattori K, Heissig B, Tejada R, Liao F, Shido K, Jin DK, Dias S, Zhang F, Hartman TE, Hackett NR, Crystal RG, Witte L, Hicklin DJ, Bohlen P, Eaton D, Lyden D, de Sauvage F, Rafii S (2004) Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10:64–71

    Article  CAS  PubMed  Google Scholar 

  7. Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481:457–462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25:977–988

    Article  CAS  PubMed  Google Scholar 

  9. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–336

    Article  CAS  PubMed  Google Scholar 

  10. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma'ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    Article  CAS  PubMed  Google Scholar 

  12. Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y, Tesio M, Samstein RM, Goichberg P, Spiegel A, Elson A, Lapidot T (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 12:657–664

    Article  CAS  PubMed  Google Scholar 

  13. Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y, Gomei Y, Iwasaki H, Matsuoka S, Miyamoto K, Miyazaki H, Takahashi T, Suda T (2007) Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1:685–697

    Article  CAS  PubMed  Google Scholar 

  14. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841

    Article  CAS  PubMed  Google Scholar 

  15. Fujisaki J, Wu J, Carlson AL, Silberstein L, Putheti P, Larocca R, Gao W, Saito TI, Lo Celso C, Tsuyuzaki H, Sato T, Cote D, Sykes M, Strom TB, Scadden DT, Lin CP (2011) In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474:216–219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lo Celso C, Fleming HE, Wu JW, Zhao CX, Miake-Lye S, Fujisaki J, Cote D, Rowe DW, Lin CP, Scadden DT (2009) Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457:92–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Carlson AL, Fujisaki J, Wu J, Runnels JM, Turcotte R, Celso CL, Scadden DT, Strom TB, Lin CP (2013) Tracking single cells in live animals using a photoconvertible near-infrared cell membrane label. PLoS One 8:e69257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Dutta P, Courties G, Wei Y et al (2012) Myocardial infarction accelerates atherosclerosis. Nature 487:325–329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Park D, Spencer JA, Koh BI, Kobayashi T, Fujisaki J, Clemens TL, Lin CP, Kronenberg HM, Scadden DT (2012) Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10:259–272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Cao YA, Wagers AJ, Beilhack A, Dusich J, Bachmann MH, Negrin RS, Weissman IL, Contag CH (2004) Shifting foci of hematopoiesis during reconstitution from single stem cells. Proc Natl Acad Sci U S A 101:221–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Wang X, Rosol M, Ge S, Peterson D, McNamara G, Pollack H, Kohn DB, Nelson MD, Crooks GM (2003) Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. Blood 102:3478–3482

    Article  CAS  PubMed  Google Scholar 

  22. Plett PA, Frankovitz SM, Orschell CM (2003) Distribution of marrow repopulating cells between bone marrow and spleen early after transplantation. Blood 102:2285–2291

    Article  CAS  PubMed  Google Scholar 

  23. Mazo IB, Gutierrez-Ramos JC, Frenette PS, Hynes RO, Wagner DD, von Andrian UH (1998) Hematopoietic progenitor cell rolling in bone marrow microvessels: parallel contributions by endothelial selectins and vascular cell adhesion molecule 1. J Exp Med 188:465–474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Storer JB (1966) Acute responses to ionizing radiation. In: Green EL (ed) Biology of the laboratory mouse, 2nd edn. Dover Publications, Inc., New York

    Google Scholar 

  25. Lo Celso C, Lin CP, Scadden DT (2011) In vivo imaging of transplanted hematopoietic stem and progenitor cells in mouse calvarium bone marrow. Nat Protoc 6:1–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Ema H, Morita Y, Yamazaki S, Matsubara A, Seita J, Tadokoro Y, Kondo H, Takano H, Nakauchi H (2006) Adult mouse hematopoietic stem cells: purification and single-cell assays. Nat Protoc 1:2979–2987

    Article  CAS  PubMed  Google Scholar 

  27. Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA (2008) Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 322:1861–1865

    Article  CAS  PubMed  Google Scholar 

  28. Lo Celso C, Scadden D (2007) Isolation and transplantation of hematopoietic stem cells (HSCs). J Vis Exp 2:157

    PubMed  Google Scholar 

  29. Lassailly F, Foster K, Lopez-Onieva L, Currie E, Bonnet D (2013) Multimodal imaging reveals structural and functional heterogeneity in different bone marrow compartments: functional implications on hematopoietic stem cells. Blood 122:1730–1740

    Article  CAS  PubMed  Google Scholar 

  30. Sipkins DA, Wei X, Wu JW, Runnels JM, Cote D, Means TK, Luster AD, Scadden DT, Lin CP (2005) In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435:969–973

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Runnels JM, Carlson AL, Pitsillides C, Thompson B, Wu J, Spencer JA, Kohler JMJ, Azab A, Moreau A-S, Rodig SJ, Kung AL, Anderson KC, Ghobrial IM, Lin CP (2011) Optical techniques for tracking multiple myeloma engraftment, growth, and response to therapy. J Biomed Opt 16:011006–011013

    Article  PubMed Central  PubMed  Google Scholar 

  32. Barrett O, Sottocornola R, Lo Celso C (2012) In vivo imaging of hematopoietic stem cells in the bone marrow niche. Methods Mol Biol 916:231–242

    Article  CAS  PubMed  Google Scholar 

  33. Ishii M, Egen JG, Klauschen F, Meier-Schellersheim M, Saeki Y, Vacher J, Proia RL, Germain RN (2009) Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 458:524–528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Malide D, Metais JY, Dunbar CE (2012) Dynamic clonal analysis of murine hematopoietic stem and progenitor cells marked by 5 fluorescent proteins using confocal and multiphoton microscopy. Blood 120:e105–e116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Visnjic D, Kalajzic I, Gronowicz G, Aguila HL, Clark SH, Lichtler AC, Rowe DW (2001) Conditional ablation of the osteoblast lineage in Col2.3∆tk transgenic mice. Bone Miner Res 16:2222–2231

    Article  CAS  Google Scholar 

  36. 8 Common Suture Techniques for Skin Closure (2012) http://www.youtube.com/watch?v=-ZWUgKiBxfk. Accessed 30 Sept 2013

  37. Suture-Basic Technique 1 (2009) http://www.youtube.com/watch?v=6P0rYS6LeZw. Accessed 30 Sept 2013

  38. Fiji Is Just ImageJ (2013) http://www.fiji.sc/Fiji. Accessed 30 Sept 2013

  39. Lassailly F, Griessinger E, Bonnet D (2010) "Microenvironmental contaminations" induced by fluorescent lipophilic dyes used for noninvasive in vitro and in vivo cell tracking. Blood 115:5347–5354

    Article  CAS  PubMed  Google Scholar 

  40. Li P, Zhang R, Sun H, Chen L, Liu F, Yao C, Du M, Jiang X (2013) PKH26 can transfer to host cells in vitro and vivo. Stem Cells Dev 22:340–344

    Article  PubMed Central  PubMed  Google Scholar 

  41. Invitrogen Fluorescence SpectraViewer (2013) http://www.lifetechnologies.com/us/en/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html. Accessed 26 Sept 2013

  42. BD Fluorescence Spectrum Viewer (2013) http://www.bdbiosciences.com/research/multicolor/spectrum_viewer/index.jsp. Accessed 26 Sept 2013

  43. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103–1163

    Article  CAS  PubMed  Google Scholar 

  44. Bestvater F, Spiess E, Stobrawa G, Hacker M, Feurer T, Porwol T, Berchner-Pfannschmidt U, Wotzlaw C, Acker H (2002) Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging. J Microsc 208:108–115

    Article  CAS  PubMed  Google Scholar 

  45. Drobizhev M, Makarov NS, Tillo SE, Hughes TE, Rebane A (2011) Two-photon absorption properties of fluorescent proteins. Nat Methods 8:393–399

    Article  CAS  PubMed  Google Scholar 

  46. Spiess E, Bestvater F, Heckel-Pompey A, Toth K, Hacker M, Stobrawa G, Feurer T, Wotzlaw C, Berchner-Pfannschmidt U, Porwol T, Acker H (2005) Two-photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP. J Microsc 217:200–204

    Article  CAS  PubMed  Google Scholar 

  47. Inoue S, Osmond DG (2001) Basement membrane of mouse bone marrow sinusoids shows distinctive structure and proteoglycan composition: a high resolution ultrastructural study. Anat Rec 264:294–304

    Article  CAS  PubMed  Google Scholar 

  48. Challen GA, Little MH (2006) A side order of stem cells: the SP phenotype. Stem Cells 24:3–12

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Raphaël Turcotte for the mouse skull shown in Fig. 2a and Drs. Luke Mortensen and Amir Schajnovitz for the image displayed in Fig. 2b. This work was funded by NIH HL097748, HL97794, and HL100402.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles P. Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wu, J.W., Runnels, J.M., Lin, C.P. (2014). Intravital Imaging of Hematopoietic Stem Cells in the Mouse Skull. In: Bunting, K., Qu, CK. (eds) Hematopoietic Stem Cell Protocols. Methods in Molecular Biology, vol 1185. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1133-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1133-2_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1132-5

  • Online ISBN: 978-1-4939-1133-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics