Skip to main content

Immunoinformatics, Molecular Modeling, and Cancer Vaccines

  • Protocol
  • First Online:
Immunoinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1184))

Abstract

Cancer vaccines are a natural way of fighting the development and progression of cancer as they harness the power of immune system to tweak it into killing cancerous cells. One of the most important agents in an immune system, the cytotoxic T cells (CTL), play a major role and the CTL epitopes in the form of an immunotherapeutic product have been shown to help mount an immune response towards tumor cell destruction. Immunoinformatics and molecular modeling tools have proven powerful towards the prediction of plausible CTL epitopes as well as other epitopes, cutting short the time and cost. We focus on the sequential methodology using these tools as well as some databases to generate a succinct list of enterprising subtype-specific or promiscuous peptide epitopes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pronker ES, Weenen TC, Commandeur H, Claassen EHJHM, Osterhaus ADME (2013) Risk in vaccine research and development quantified. PLoS One 8(3):e57755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Tu SH, Huang HI, Lin SI, Liu HY, Sher YP, Chiang SK, Chong P, Roffler S, Tseng GC, Chen HW, Liu SJ (2012) A novel HLA-A2-restricted CTL epitope of tumor-associated antigen L6 can inhibit tumor growth in vivo. J Immunother 35(3):235–244

    Article  CAS  PubMed  Google Scholar 

  3. Bellone S, Anfossi S, O'Brien TJ, Cannon MJ, Silasi DA, Azodi M, Schwartz PE, Rutherford TJ, Pecorelli S, Santin AD (2009) Induction of human tumor-associated differentially expressed gene-12 (TADG-12/TMPRSS3)-specific cytotoxic T lymphocytes in human lymphocyte antigen-A2.1-positive healthy donors and patients with advanced ovarian cancer. Cancer 115(4):800–811

    Article  CAS  PubMed  Google Scholar 

  4. Neumann F, Kubuschok B, Ertan K, Schormann C, Stevanovic S, Preuss KD, Schmidt W, Pfreundschuh M (2011) A peptide epitope derived from the cancer testis antigen HOM-MEL-40/SSX2 capable of inducing CD4+ and CD8+ T-cell as well as B-cell responses. Cancer Immunol Immunother 60(9):1333–1346

    Article  CAS  PubMed  Google Scholar 

  5. Gritzapis AD, Fridman A, Perez SA, La Monica N, Papamichail M, Aurisicchio L, Baxevanis CN (2009) HER-2/neu (657-665) represents an immunogenic epitope of HER-2/neu oncoprotein with potent antitumor properties. Vaccine 28(1):162–170

    Article  PubMed  Google Scholar 

  6. Mishra S, Sinha S (2006) Prediction and molecular modeling of T cell epitopes derived from placental alkaline phosphatase for use in cancer immunotherapy. J Biomol Struct Dyn 24(2):109–121

    Article  CAS  PubMed  Google Scholar 

  7. Mishra S, Sinha S (2009) Immunoinformatics and modeling perspective of T cell epitope-based cancer immunotherapy: a holistic picture. J Biomol Struct Dyn 27(3):293–306

    Article  CAS  PubMed  Google Scholar 

  8. Jørgensen KW, Buus S, Nielsen M (2010) Structural properties of MHC class II ligands, implications for the prediction of MHC class II epitopes. PLoS One 5(12):e15877

    Article  PubMed Central  PubMed  Google Scholar 

  9. van der Bruggen P, Stroobant V, Vigneron N, Van den Eynde B (2013) Peptide database: T cell-defined tumor antigens. Cancer Immun 13:15, http://cancerimmunity.org/peptide/

    PubMed Central  PubMed  Google Scholar 

  10. Parker KC, Bednarek MA, Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152:163

    CAS  PubMed  Google Scholar 

  11. Rammensee H-G, Friede T, Stevanovic S (1995) MHC ligands and peptide motifs: 1st listing. Immunogenetics 41:178–228

    Article  CAS  PubMed  Google Scholar 

  12. Rammensee, H-G. Bachmann, J., Stevanovic, S. (1997) MHC ligands and peptide motifs. Landes Bioscience (International distributor—except North America). Springer, Heidelberg

    Google Scholar 

  13. Singh H, Raghava GP (2003) ProPred1: prediction of promiscuous MHC class-I binding sites. Bioinformatics 19:1009–1014

    Article  CAS  PubMed  Google Scholar 

  14. Singh H, Raghava GPS (2001) ProPred: prediction of HLA-DR binding sites. Bioinformatics 17(12):1236–1237

    Article  CAS  PubMed  Google Scholar 

  15. Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M (2008) NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11. Nucleic Acids Res 36(Web Server issue):W509–W512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lundegaard C, Lund O, Nielsen M (2008) Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers. Bioinformatics 24(11):1397–1398

    Article  CAS  PubMed  Google Scholar 

  17. Nussbaum AK, Kuttler C, Hadeler KP, Rammensee H-G, Schild H (2001) PAProC: a prediction algorithm for proteasomal cleavages available on the WWW. Immunogenetics 53:87–94

    Article  CAS  PubMed  Google Scholar 

  18. Nielsen M, Lundegaard C, Lund O, Kesmir C (2005) The role of the proteasome in generating cytotoxic T cell epitopes: Insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 57(1–2):33–41

    Article  CAS  PubMed  Google Scholar 

  19. Holzhütter HG, Kloetzel P-M (2000) A kinetic model of vertebrate 20S proteasome accounting for the generation of major proteolytic fragments from oligomeric peptide substrates. Biophys J 79:1196–1205

    Article  PubMed Central  PubMed  Google Scholar 

  20. Bhasin M, Raghava GPS (2004) Analysis and prediction of affinity of TAP binding peptides using cascade SVM. Protein Sci 13(3):596–607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Hakenberg J, Nussbaum A, Schild H, Rammensee H-G, Kuttler C, Holzhütter H-G, Kloetzel P-M, Kaufmann SHE, Mollenkopf H-J (2003) MAPPP—MHC-I antigenic peptide processing prediction. Appl Bioinformatics 2(3):155–158

    CAS  PubMed  Google Scholar 

  22. Larsen MV, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M (2007) Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 8:424

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Sinha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mishra, S., Sinha, S. (2014). Immunoinformatics, Molecular Modeling, and Cancer Vaccines. In: De, R., Tomar, N. (eds) Immunoinformatics. Methods in Molecular Biology, vol 1184. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1115-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1115-8_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1114-1

  • Online ISBN: 978-1-4939-1115-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics