Skip to main content

Machine Learning-Based Methods for Prediction of Linear B-Cell Epitopes

  • Protocol
  • First Online:
Immunoinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1184))

Abstract

B-cell epitope prediction facilitates immunologists in designing peptide-based vaccine, diagnostic test, disease prevention, treatment, and antibody production. In comparison with T-cell epitope prediction, the performance of variable length B-cell epitope prediction is still yet to be satisfied. Fortunately, due to increasingly available verified epitope databases, bioinformaticians could adopt machine learning-based algorithms on all curated data to design an improved prediction tool for biomedical researchers. Here, we have reviewed related epitope prediction papers, especially those for linear B-cell epitope prediction. It should be noticed that a combination of selected propensity scales and statistics of epitope residues with machine learning-based tools formulated a general way for constructing linear B-cell epitope prediction systems. It is also observed from most of the comparison results that the kernel method of support vector machine (SVM) classifier outperformed other machine learning-based approaches. Hence, in this chapter, except reviewing recently published papers, we have introduced the fundamentals of B-cell epitope and SVM techniques. In addition, an example of linear B-cell prediction system based on physicochemical features and amino acid combinations is illustrated in details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davies DR, Cohen GH (1996) Interactions of protein antigens with antibodies. Proc Natl Acad Sci U S A 93(1):7–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Korber B, LaBute M, Yusim K (2006) Immunoinformatics comes of age. PLoS Comput Biol 2(6):e71. doi:10.1371/journal.pcbi.0020071

    Article  PubMed Central  PubMed  Google Scholar 

  3. Greenbaum JA, Andersen PH, Blythe M, Bui HH, Cachau RE, Crowe J, Davies M, Kolaskar AS, Lund O, Morrison S, Mumey B, Ofran Y, Pellequer JL, Pinilla C, Ponomarenko JV, Raghava GP, van Regenmortel MH, Roggen EL, Sette A, Schlessinger A, Sollner J, Zand M, Peters B (2007) Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J Mol Recognit 20(2):75–82. doi:10.1002/jmr.815

    Article  CAS  PubMed  Google Scholar 

  4. Yang X, Yu X (2009) An introduction to epitope prediction methods and software. Rev Med Virol 19(2):77–96. doi:10.1002/rmv.602

    Article  CAS  PubMed  Google Scholar 

  5. Salimi N, Fleri W, Peters B, Sette A (2010) Design and utilization of epitope-based databases and predictive tools. Immunogenetics 62(4):185–196. doi:10.1007/s00251-010-0435-2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. El-Manzalawy Y, Honavar V (2010) Recent advances in B-cell epitope prediction methods. Immunome Res 6(Suppl 2):S2. doi:10.1186/1745-7580-6-S2-S2

    Article  PubMed Central  PubMed  Google Scholar 

  7. Caoili SE (2010) Benchmarking B-cell epitope prediction for the design of peptide-based vaccines problems and prospects. J Biomed Biotechnol, vol. 2010, Article ID 910524:1–14, doi:10.1155/2010/910524

  8. Yao B, Zheng D, Liang S, Zhang C (2013) Conformational B-cell epitope prediction on antigen protein structures: a review of current algorithms and comparison with common binding site prediction methods. PLoS One 8(4):e62249. doi:10.1371/journal.pone.0062249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Jardetzky TS, Brown JH, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1996) Crystallographic analysis of endogenous peptides associated with HLA-DR1 suggests a common, polyproline II-like conformation for bound peptides. Proc Natl Acad Sci U S A 93(2):734–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Patronov A, Doytchinova I (2013) T-cell epitope vaccine design by immunoinformatics. Open Biol 3(1):120139. doi:10.1098/rsob.120139

    Article  PubMed Central  PubMed  Google Scholar 

  11. Barlow DJ, Edwards MS, Thornton JM (1986) Continuous and discontinuous protein antigenic determinants. Nature 322(6081):747–748

    Article  CAS  PubMed  Google Scholar 

  12. Van Regenmortel MH (2006) Immunoin-formatics may lead to a reappraisal of the nature of B cell epitopes and of the feasibility of synthetic peptide vaccines. J Mol Recognit 19(3):183–187

    Article  PubMed  Google Scholar 

  13. Salimi N, Fleri W, Peters B, Sette A (2012) The immune epitope database: a historical retrospective of the first decade. Immunology 137(2):117–123. doi:10.1111/j.1365-2567.2012.03611.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kringelum JV, Nielsen M, Padkjaer SB, Lund O (2013) Structural analysis of B-cell epitopes in antibody:protein complexes. Mol Immunol 53(1–2):24–34. doi:10.1016/j.molimm.2012.06.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kolaskar AS, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276(1–2):172–174

    Article  CAS  PubMed  Google Scholar 

  16. Alix AJ (1999) Predictive estimation of protein linear epitopes by using the program PEOPLE. Vaccine 18(3–4):311–314

    Article  CAS  PubMed  Google Scholar 

  17. Odorico M, Pellequer JL (2003) BEPITOPE: predicting the location of continuous epitopes and patterns in proteins. J Mol Recognit 16(1):20–22

    Article  CAS  PubMed  Google Scholar 

  18. Saha S, Raghhava GPS (2004) BcePred: prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties. LNCS 3239:197–204

    Google Scholar 

  19. Saha S, Raghava GP (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65(1):40–48

    Article  CAS  PubMed  Google Scholar 

  20. Larsen JE, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2:2

    Article  PubMed Central  PubMed  Google Scholar 

  21. Sollner J, Mayer B (2006) Machine learning approaches for prediction of linear B-cell epitopes on proteins. J Mol Recognit 19(3):200–208

    Article  PubMed  Google Scholar 

  22. Chen J, Liu H, Yang J, Chou KC (2007) Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids 33(3):423–428. doi:10.1007/s00726-006-0485-9

    Article  CAS  PubMed  Google Scholar 

  23. El-Manzalawy Y, Dobbs D, Honavar V (2008) Predicting linear B-cell epitopes using string kernels. J Mol Recognit 21(4):243–255. doi:10.1002/jmr.893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. El-Manzalawy Y, Dobbs D, Honavar V (2008) Predicting flexible length linear B-cell epitopes. Comput Syst Bioinformatics Conf 7:121–132

    PubMed Central  PubMed  Google Scholar 

  25. Chang HT, Liu CH, Pai TW (2008) Estimation and extraction of B-cell linear epitopes predicted by mathematical morphology approaches. J Mol Recognit 21(6):431–441. doi:10.1002/jmr.910

    Article  CAS  PubMed  Google Scholar 

  26. Sweredoski MJ, Baldi P (2009) COBEpro: a novel system for predicting continuous B-cell epitopes. Protein Eng Des Sel 22(3):113–120. doi:10.1093/protein/gzn075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Rubinstein ND, Mayrose I, Martz E, Pupko T (2009) Epitopia: a web-server for predicting B-cell epitopes. BMC Bioinformatics 10:287. doi:10.1186/1471-2105-10-287

    Article  PubMed Central  PubMed  Google Scholar 

  28. Rubinstein ND, Mayrose I, Pupko T (2009) A machine-learning approach for predicting B-cell epitopes. Mol Immunol 46(5):840–847. doi:10.1016/j.molimm.2008.09.009

    Article  CAS  PubMed  Google Scholar 

  29. Wee LJ, Simarmata D, Kam YW, Ng LF, Tong JC (2010) SVM-based prediction of linear B-cell epitopes using Bayes feature extraction. BMC Genomics 11(Suppl 4):S21. doi:10.1186/1471-2164-11-S4-S21

    Article  PubMed Central  PubMed  Google Scholar 

  30. Wang HW, Lin YC, Pai TW, Chang HT (2011) Prediction of B-cell linear epitopes with a combination of support vector machine classification and amino acid propensity identification. J Biomed Biotechnol 2011:432830. doi:10.1155/2011/432830

    PubMed Central  PubMed  Google Scholar 

  31. Gao J, Faraggi E, Zhou Y, Ruan J, Kurgan L (2012) BEST: improved prediction of B-cell epitopes from antigen sequences. PLoS One 7(6):e40104. doi:10.1371/journal.pone.0040104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Yao B, Zhang L, Liang S, Zhang C (2012) SVMTriP: a method to predict antigenic epitopes using support vector machine to integrate tri-peptide similarity and propensity. PLoS One 7(9):e45152. doi:10.1371/journal.pone.0045152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Lin SY, Cheng CW, Su EC (2013) Prediction of B-cell epitopes using evolutionary information and propensity scales. BMC Bioinformatics 14(Suppl 2):S10

    Article  PubMed Central  PubMed  Google Scholar 

  34. Singh H, Ansari HR, Raghava GP (2013) Improved method for linear B-cell epitope prediction using antigen’s primary sequence. PLoS One 8(5):e62216. doi:10.1371/journal.pone.0062216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Emini EA, Hughes JV, Perlow DS, Boger J (1985) Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55(3):836–839

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Parker JM, Guo D, Hodges RS (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25(19):5425–5432

    Article  CAS  PubMed  Google Scholar 

  37. Vihinen M, Torkkila E, Riikonen P (1994) Accuracy of protein flexibility predictions. Proteins 19(2):141–149

    Article  CAS  PubMed  Google Scholar 

  38. Debelle L, Wei SM, Jacob MP, Hornebeck W, Alix AJ (1992) Predictions of the secondary structure and antigenicity of human and bovine tropoelastins. Eur Biophys J 21(5):321–329

    Article  CAS  PubMed  Google Scholar 

  39. Blythe MJ, Flower DR (2005) Benchmarking B cell epitope prediction: underperformance of existing methods. Protein Sci 14(1):246–248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Noble WS (2006) What is a support vector machine? Nat Biotechnol 24(12):1565–1567. doi:10.1038/nbt1206-1565

    Article  CAS  PubMed  Google Scholar 

  41. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Book  Google Scholar 

  42. Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):1–27. doi:10.1145/1961189.1961199

    Article  Google Scholar 

  43. Joachims T (1999) Making large-scale support vector machine learning practical. Advances in kernel methods. MIT Press, Cambridge, MA, pp 169–184

    Google Scholar 

  44. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana, Totowa, NJ, pp 571–607

    Chapter  Google Scholar 

  45. Deleage G, Roux B (1987) An algorithm for protein secondary structure prediction based on class prediction. Protein Eng 1(4):289–294

    Article  CAS  PubMed  Google Scholar 

  46. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132

    Article  CAS  PubMed  Google Scholar 

  47. Karplus PA, Schulz GE (1987) Refined structure of glutathione reductase at 1.54 A resolution. J Mol Biol 195(3):701–729

    Article  CAS  PubMed  Google Scholar 

  48. Alix AP (1997) Molecular modeling of globular proteins: strategy 1D ⇒ 3D: secondary structures and epitopes. In: Vergoten G, Theophanides T (eds) Biomolecular structure and dynamics, vol. 342. NATO ASI series. Springer, Netherlands, pp 121–150. doi:10.1007/978-94-011-5484-0_6

    Chapter  Google Scholar 

  49. Giardina CR, Dougherty ER (1988) Morphological methods in image and signal processing. Prentice-Hall, Inc., Upper Saddle River, NJ

    Google Scholar 

  50. Maragos P, Schafer RW (1987) “Morphological Filters” part I and II. IEEE Trans Signal Process 35(8):1153–1184

    Article  Google Scholar 

  51. Serra J (1982) Image analysis and mathematical morphology, vol 1. Academic, New York

    Google Scholar 

  52. Serra J (1988) Image analysis and mathematical morphology, vol 2. Academic, New York

    Google Scholar 

  53. Liu C-H (2007) Mathematical morphology based biochemical property filters for linear epitope prediction. National Taiwan Ocean University, Keelung, Taiwan

    Google Scholar 

  54. Yousef M, Jung S, Showe LC, Showe MK (2008) Learning from positive examples when the negative class is undetermined–microRNA gene identification. Algorithms Mol Biol 3:2. doi:10.1186/1748-7188-3-2

    Article  PubMed Central  PubMed  Google Scholar 

  55. Saha S, Bhasin M, Raghava GP (2005) Bcipep: a database of B-cell epitopes. BMC Genomics 6:79. doi:10.1186/1471-2164-6-79

    Article  PubMed Central  PubMed  Google Scholar 

  56. Ivanciuc O (2007) Applications of support vector machines in chemistry. Reviews in computational chemistry. Wiley, Hoboken, NJ, pp 291–400. doi:10.1002/9780470116449.ch6

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Center of Excellence for the Oceans, National Taiwan Ocean University, and National Science Council, Taiwan, R.O.C. (NSC 102-2321-B-019-001 and NSC 102-2221-E-019-059 to T.-W. Pai).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tun-Wen Pai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wang, HW., Pai, TW. (2014). Machine Learning-Based Methods for Prediction of Linear B-Cell Epitopes. In: De, R., Tomar, N. (eds) Immunoinformatics. Methods in Molecular Biology, vol 1184. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1115-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1115-8_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1114-1

  • Online ISBN: 978-1-4939-1115-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics