Skip to main content

Whole-Cell Voltage Clamp on Skeletal Muscle Fibers with the Silicone-Clamp Technique

  • Protocol
  • First Online:
Patch-Clamp Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1183))

Abstract

Control of membrane voltage and membrane current measurements are of critical importance for the study of numerous aspects of skeletal muscle physiology and pathophysiology. The silicone-clamp technique makes use of a conventional patch-clamp apparatus to achieve whole-cell voltage clamp of a restricted portion of a fully differentiated adult skeletal muscle fiber. The major part of an isolated muscle fiber is insulated from the extracellular medium with silicone grease and the tip of a single microelectrode connected to the amplifier is then inserted within the fiber through the silicone layer. The method is extremely easy to implement. It represents an alternative to the traditional vaseline-gap isolation and two or three microelectrodes voltage-clamp techniques. The present chapter reviews the benefits of the silicone-clamp technique and provides updated detailed insights into its practical implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adrian RH, Chandler WK, Hodgkin AL (1966) Voltage clamp experiments in skeletal muscle fibres. J Physiol 186:51P–52P

    CAS  PubMed  Google Scholar 

  2. Ildefonse M, Rougier O (1972) Voltage-clamp analysis of the early current in frog skeletal muscle fibre using the double sucrose-gap method. J Physiol 222:373–395

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Hille B, Campbell DT (1976) An improved vaseline gap voltage clamp for skeletal muscle fibers. J Gen Physiol 67:265–293

    Article  CAS  PubMed  Google Scholar 

  4. Kovacs L, Schneider MF (1978) Contractile activation by voltage clamp depolarization of cut skeletal muscle fibres. J Physiol 277:483–506

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Duval A, Léoty C (1980) Comparison between the delayed outward current in slow and fast twitch skeletal muscle in the rat. J Physiol 307:43–57

    CAS  PubMed Central  PubMed  Google Scholar 

  6. García J, Amador M, Stefani E (1989) Relationship between myoplasmic calcium transients and calcium currents in frog skeletal muscle. J Gen Physiol 94:973–986

    Article  PubMed  Google Scholar 

  7. Jacquemond V, Csernoch L, Klein MG, Schneider MF (1991) Voltage-gated and calcium-gated calcium release during depolarization of skeletal muscle fibers. Biophys J 60:867–873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Jong DS, Pape PC, Chandler WK, Baylor SM (1993) Reduction of calcium inactivation of sarcoplasmic reticulum calcium release by fura-2 in voltage-clamped cut twitch fibers from frog muscle. J Gen Physiol 102:333–370

    Article  CAS  PubMed  Google Scholar 

  9. Sanchez JA, Vergara J (1994) Modulation of Ca2+ transients by photorelease of caged nucleotides in frog skeletal muscle fibers. Am J Physiol 266:C1291–C1300

    CAS  PubMed  Google Scholar 

  10. Shvinka N, Caffier G (1994) Cation conductance and efflux induced by polyene antibiotics in the membrane of skeletal muscle fiber. Biophys J 67:143–152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Delbono O (1995) Ca2+ modulation of sarcoplasmic reticulum Ca2+ release in rat skeletal muscle fibers. J Membr Biol 146:91–99

    CAS  PubMed  Google Scholar 

  12. Gonzalez A, Caputo C (1996) Ryanodine interferes with charge movement repriming in amphibian skeletal muscle fibers. Biophys J 70:376–382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Szentesi P, Jacquemond V, Kovács L, Csernoch L (1997) Intramembrane charge movement and sarcoplasmic calcium release in enzymatically isolated mammalian skeletal muscle fibres. J Physiol 505:371–384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hui CS (1998) A slow calcium-dependent component of charge movement in Rana temporaria cut twitch fibres. J Physiol 509:869–885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Struk A, Lehmann-Horn F, Melzer W (1998) Voltage-dependent calcium release in human malignant hyperthermia muscle fibers. Biophys J 75:2402–2410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Shirokova N, García J, Ríos E (1998) Local calcium release in mammalian skeletal muscle. J Physiol 512:377–384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Pape PC, Carrier N (2002) Calcium release and intramembranous charge movement in frog skeletal muscle fibres with reduced (<250 microM) calcium content. J Physiol 539:253–266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Squecco R, Bencini C, Piperio C, Francini F (2004) L-type Ca2+ channel and ryanodine receptor cross-talk in frog skeletal muscle. J Physiol 555:137–152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Adrian RH, Chandler WK, Hodgkin AL (1970) Voltage clamp experiments in striated muscle fibres. J Physiol 208:607–644

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Chandler WK, Rakowski RF, Schneider MF (1976) A non-linear voltage dependent charge movement in frog skeletal muscle. J Physiol 254:245–283

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Heistracher P, Hunt CC (1969) The relation of membrane changes to contraction in twitch muscle fibres. J Physiol 201:589–611

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Caputo C, Bolaños P, Gonzalez A (1993) Effects of sulfhydryl inhibitors on depolarizations-contraction coupling in frog skeletal muscle fibers. J Gen Physiol 101:411–424

    Article  CAS  PubMed  Google Scholar 

  23. Friedrich O, Ehmer T, Fink RH (1999) Calcium currents during contraction and shortening in enzymatically isolated murine skeletal muscle fibres. J Physiol 517:757–770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Gómez J, Neco P, Di Franco M, Vergara JL (2006) Calcium release domains in mammalian skeletal muscle studied with two-photon imaging and spot detection techniques. J Gen Physiol 127:623–637

    Article  PubMed Central  PubMed  Google Scholar 

  25. Andronache Z, Hamilton SL, Dirksen RT, Melzer W (2009) A retrograde signal from RyR1 alters DHP receptor inactivation and limits window Ca2+ release in muscle fibers of Y522S RyR1 knock-in mice. Proc Natl Acad Sci U S A 106:4531–4536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Bekoff A, Betz WJ (1977) Physiological properties of dissociated muscle fibres obtained from innervated and denervated adult rat muscle. J Physiol 271:25–40

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Hernández-Ochoa EO, Schneider MF (2012) Voltage clamp methods for the study of membrane currents and SR Ca2+ release in adult skeletal muscle fibres. Prog Biophys Mol Biol 108:98–118

    Article  PubMed Central  PubMed  Google Scholar 

  28. Woods CE, Novo D, DiFranco M, Vergara JL (2004) The action potential-evoked sarcoplasmic reticulum calcium release is impaired in mdx mouse muscle fibres. J Physiol 557:59–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Jacquemond V (1997) Indo-1 fluorescence signals elicited by membrane depolarization in enzymatically isolated mouse skeletal muscle fibers. Biophys J 73:920–928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Jacquemond V, Allard B (1998) Activation of Ca2+-activated K+ channels by an increase in intracellular Ca2+ induced by depolarization of mouse skeletal muscle fibres. J Physiol 509:93–102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Collet C, Pouvreau S, Csernoch L et al (2004) Calcium signaling in isolated skeletal muscle fibers investigated under “Silicone Voltage-Clamp” conditions. Cell Biochem Biophys 40:225–236

    Article  CAS  PubMed  Google Scholar 

  32. Csernoch L, Bernengo JC, Szentesi P, Jacquemond V (1998) Measurements of intracellular Mg2+ concentration in mouse skeletal muscle fibers with the fluorescent indicator mag-indo-1. Biophys J 75:957–967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Bernengo JC, Collet C, Jacquemond V (2001) Intracellular Mg2+ diffusion within isolated rat skeletal muscle fibers. Biophys Chem 89:35–51

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Centre National de la Recherche Scientifique, the Université Claude Bernard Lyon 1, and the Association Française contre les Myopathies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Jacquemond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lefebvre, R., Pouvreau, S., Collet, C., Allard, B., Jacquemond, V. (2014). Whole-Cell Voltage Clamp on Skeletal Muscle Fibers with the Silicone-Clamp Technique. In: Martina, M., Taverna, S. (eds) Patch-Clamp Methods and Protocols. Methods in Molecular Biology, vol 1183. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1096-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1096-0_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1095-3

  • Online ISBN: 978-1-4939-1096-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics