Skip to main content

Whole-Cell Patch-Clamp Recordings in Freely Moving Animals

  • Protocol
  • First Online:
Patch-Clamp Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1183))

Abstract

The patch-clamp technique and the whole-cell measurements derived from it have greatly advanced our understanding of the coding properties of individual neurons by allowing for a detailed analysis of their excitatory/inhibitory synaptic inputs, intrinsic electrical properties, and morphology. Because such measurements require a high level of mechanical stability they have for a long time been limited to in vitro and anesthetized preparations. Recently, however, a considerable amount of effort has been devoted to extending these techniques to awake restrained/head-fixed preparations allowing for the study of the input–output functions of neurons during behavior. In this chapter we describe a technique extending patch-clamp recordings to awake animals free to explore their environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  CAS  PubMed  Google Scholar 

  2. Pei X, Volgushev M, Vidyasagar TR, Creutzfeldt OD (1991) Whole cell recording and conductance measurements in cat visual cortex in-vivo. Neuroreport 2:485–488

    Article  CAS  PubMed  Google Scholar 

  3. Ferster D, Jagadeesh B (1992) EPSP-IPSP interactions in cat visual cortex studied with in vivo whole-cell patch recording. J Neurosci 12:1262–1274

    CAS  PubMed  Google Scholar 

  4. Borg-Graham L, Monier C, Fregnac Y (1996) Voltage-clamp measurement of visually-evoked conductances with whole-cell patch recordings in primary visual cortex. J Physiol Paris 90: 185–188

    Article  CAS  PubMed  Google Scholar 

  5. Margrie TW, Brecht M, Sakmann B (2002) In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch 444:491–498

    Article  CAS  PubMed  Google Scholar 

  6. Wehr M, Zador AM (2003) Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426:442–446

    Article  CAS  PubMed  Google Scholar 

  7. Bruno RM, Sakmann B (2006) Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312:1622–1627

    Article  CAS  PubMed  Google Scholar 

  8. Covey E, Kauer JA, Casseday JH (1996) Whole-cell patch-clamp recording reveals subthreshold sound-evoked postsynaptic currents in the inferior colliculus of awake bats. J Neurosci 16:3009–3018

    CAS  PubMed  Google Scholar 

  9. Aksay E, Gamkrelidze G, Seung HS, Baker R, Tank DW (2001) In vivo intracellular recording and perturbation of persistent activity in a neural integrator. Nat Neurosci 4:184–193

    Article  CAS  PubMed  Google Scholar 

  10. Wilson RI, Turner GC, Laurent G (2004) Transformation of olfactory representations in the Drosophila antennal lobe. Science 303: 366–370

    Article  CAS  PubMed  Google Scholar 

  11. Crochet S, Petersen CC (2006) Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat Neurosci 9: 608–610

    Article  CAS  PubMed  Google Scholar 

  12. Harvey CD, Collman F, Dombeck DA, Tank DW (2009) Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461:941–946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Maimon G, Straw AD, Dickinson MH (2010) Active flight increases the gain of visual motion processing in Drosophila. Nat Neurosci 13: 393–399

    Article  CAS  PubMed  Google Scholar 

  14. Domnisoru C, Kinkhabwala AA, Tank DW (2013) Membrane potential dynamics of grid cells. Nature 495:199–204

    Article  CAS  PubMed  Google Scholar 

  15. Schmidt-Hieber C, Häusser M (2013) Cellular mechanisms of spatial navigation in the medial entorhinal cortex. Nat Neurosci 16: 325–331

    Article  CAS  PubMed  Google Scholar 

  16. Haider B, Häusser M, Carandini M (2013) Inhibition dominates sensory responses in the awake cortex. Nature 493:97–100

    Article  PubMed Central  PubMed  Google Scholar 

  17. Long MA, Lee AK (2012) Intracellular recording in behaving animals. Curr Opin Neurobiol 22:34–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Margrie TW, Meyer AH, Caputi A, Monyer H, Hasan MT, Schaefer AT, Denk W, Brecht M (2003) Targeted whole-cell recordings in the mammalian brain in vivo. Neuron 39: 911–918

    Article  CAS  PubMed  Google Scholar 

  19. Gentet LJ, Avermann M, Matyas F, Staiger JF, Petersen CC (2010) Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65:422–435

    Article  CAS  PubMed  Google Scholar 

  20. Polack PO, Friedman J, Golshani P (2013) Cellular mechanisms of brain state-dependent gain modulation in visual cortex. Nat Neurosci 16:1331–1339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412

    Article  CAS  PubMed  Google Scholar 

  22. Hölscher C, Schnee A, Dahmen H, Setia L, Mallot HA (2005) Rats are able to navigate in virtual environments. J Exp Biol 208: 561–569

    Article  PubMed  Google Scholar 

  23. Chen G, King JA, Burgess N, O’Keefe J (2013) How vision and movement combine in the hippocampal place code. Proc Natl Acad Sci U S A 110:378–383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Ravassard P, Kees A, Willers B, Ho D, Aharoni D, Cushman J, Aghajan ZM, Mehta MR (2013) Multisensory control of hippocampal spatiotemporal selectivity. Science 340: 1342–1346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Lee AK, Manns ID, Sakmann B, Brecht M (2006) Whole-cell recordings in freely moving rats. Neuron 51:399–407

    Article  CAS  PubMed  Google Scholar 

  26. Lee AK, Epsztein J, Brecht M (2009) Head-anchored whole-cell recordings in freely moving rats. Nat Protoc 4:385–392

    Article  CAS  PubMed  Google Scholar 

  27. Lee AK, Epsztein J, Brecht M (2008) Whole-cell recordings of hippocampal CA1 place cell activity in freely moving rats. Soc Neurosci Abstr 690:21

    Google Scholar 

  28. Epsztein J, Lee AK, Brecht M (2010) Impact of spikelets on hippocampal CA1 pyramidal cell activity during spatial exploration. Science 327:474–477

    Article  CAS  PubMed  Google Scholar 

  29. Epsztein J, Brecht M, Lee AK (2011) Intracellular determinants of hippocampal CA1 place and silent cell activity in a novel environment. Neuron 70:109–120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Lee D, Lin BJ, Lee AK (2012) Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior. Science 337:849–853

    Article  CAS  PubMed  Google Scholar 

  31. Long MA, Jin DZ, Fee MS (2010) Support for a synaptic chain model of neuronal sequence generation. Nature 468:394–399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Horikawa K, Armstrong WE (1988) A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J Neurosci Methods 25:1–11

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by an EMBO Long Term Fellowship and HHMI (to A. K. L.); a Human Frontier Science Program Long Term Fellowship, INSERM, Agence Nationale de la Recherche (grant ANR-09-BLAN-0259-01 and ANR-10-R11014AA), Région PACA (project EPIVIRT), A*MIDEX project (ANR-11-IDEX-0001-02) funded by the «Investissements d’Avenir» French Government program (to J.E.); Humboldt Universität zu Berlin, the Bernstein Center for Computational Neuroscience Berlin, the German Federal Ministry of Education and Research (BMBF, Förderkennzeichen 01GQ1001A), NeuroCure, a European Research Council grant, and the Gottfried Wilhelm Leibniz Prize of the DFG (to M.B).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Albert K. Lee , Jérôme Epsztein or Michael Brecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lee, A.K., Epsztein, J., Brecht, M. (2014). Whole-Cell Patch-Clamp Recordings in Freely Moving Animals. In: Martina, M., Taverna, S. (eds) Patch-Clamp Methods and Protocols. Methods in Molecular Biology, vol 1183. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1096-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1096-0_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1095-3

  • Online ISBN: 978-1-4939-1096-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics