Skip to main content

A Cost-Effective Method for Preparing, Maintaining, and Transfecting Neurons in Organotypic Slices

  • Protocol
  • First Online:
Patch-Clamp Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1183))

Abstract

The cellular and molecular mechanisms that underlie brain function are challenging to study in the living brain. The development of organotypic slices has provided a welcomed addition to our arsenal of experimental brain preparations by allowing both genetic and prolonged pharmacological manipulations in a system that, much like the acute slice preparation, retains several core features of the cellular and network architecture found in situ. Neurons in organotypic slices can survive in culture for several weeks, can be molecularly manipulated by transfection procedures and their function can be interrogated by traditional cellular electrophysiological or imaging techniques. Here, we describe a cost-effective protocol for the preparation and maintenance of organotypic slices and also describe a protocol for biolistic transfection that can be used to introduce plasmids in a small subset of neurons living in an otherwise molecularly unperturbed network. The implementation of these techniques offers a flexible experimental paradigm that can be used to study a multitude of neuronal mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li CL, McIlwain H (1957) Maintenance of resting membrane potentials in slices of mammalian cerebral cortex and other tissues in vitro. J Physiol 139(2):178–190

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Yamamoto C, McIlwain H (1966) Potentials evoked in vitro in preparations from the mammalian brain. Nature 210(5040):1055–1056

    Article  CAS  PubMed  Google Scholar 

  3. Gahwiler BH, Capogna M, Debanne D et al (1997) Organotypic slice cultures: a technique has come of age. Trends Neurosci 20(10): 471–477

    Article  CAS  PubMed  Google Scholar 

  4. Gahwiler BH (1981) Organotypic monolayer cultures of nervous tissue. J Neurosci Methods 4(4):329–342

    Article  CAS  PubMed  Google Scholar 

  5. Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37(2):173–182

    Article  CAS  PubMed  Google Scholar 

  6. Noraberg J (2004) Organotypic brain slice cultures: an efficient and reliable method for neurotoxicological screening and mechanistic studies. Altern Lab Anim 32(4):329–337

    CAS  PubMed  Google Scholar 

  7. Schnell E, Sizemore M, Karimzadegan S et al (2002) Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proc Natl Acad Sci U S A 99(21): 13902–13907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Beique JC, Andrade R (2003) PSD-95 regulates synaptic transmission and plasticity in rat cerebral cortex. J Physiol 546:859–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Barria A, Malinow R (2005) NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron 48(2):289–301

    Article  CAS  PubMed  Google Scholar 

  10. Beique JC, Imad M, Mladenovic L et al (2007) Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc Natl Acad Sci U S A 104(23):9870–9875

    Article  PubMed Central  PubMed  Google Scholar 

  11. Soares C, Lee KF, Nassrallah W et al (2013) Differential subcellular targeting of glutamate receptor subtypes during homeostatic synaptic plasticity. J Neurosci 33(33):13547–13559

    Article  CAS  PubMed  Google Scholar 

  12. Hayashi Y, Shi SH, Esteban JA et al (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287(5461): 2262–2267

    Article  CAS  PubMed  Google Scholar 

  13. Buchs PA, Stoppini L, Muller D (1993) Structural modifications associated with synaptic development in area CA1 of rat hippocampal organotypic cultures. Brain Res Dev Brain Res 71(1):81–91

    Article  CAS  PubMed  Google Scholar 

  14. Muller D, Buchs PA, Stoppini L (1993) Time course of synaptic development in hippocampal organotypic cultures. Brain Res Dev Brain Res 71(1):93–100

    Article  CAS  PubMed  Google Scholar 

  15. De Simoni A, Griesinger CB, Edwards FA (2003) Development of rat CA1 neurones in acute versus organotypic slices: role of experience in synaptic morphology and activity. J Physiol 550(Pt 1):135–147

    Article  PubMed Central  PubMed  Google Scholar 

  16. Mellentin C, Møller M, Jahnsen H (2006) Properties of long-term synaptic plasticity and metaplasticity in organotypic slice cultures of rat hippocampus. Exp Brain Res 170(4):522–531

    Article  PubMed  Google Scholar 

  17. Johnston SA (1990) Biolistic transformation: microbes to mice. Nature 346(6286):776–777

    Article  CAS  PubMed  Google Scholar 

  18. McAllister AK (2000) Biolistic transfection of neurons. Sci STKE 2000(51):pl1

    CAS  PubMed  Google Scholar 

  19. Woods G, Zito K (2008) Preparation of gene gun bullets and biolistic transfection of neurons in slice culture. J Vis Exp (12). pii: 675. doi:10.3791/675

    Google Scholar 

  20. Miller LD, Petrozzino JJ, Mahanty NK et al (1993) Optical imaging of cytosolic calcium, electrophysiology, and ultrastructure in pyramidal neurons of organotypic slice cultures from rat hippocampus. Neuroimage 1(2):109–120

    Article  CAS  PubMed  Google Scholar 

  21. Coyle P (1976) Vascular patterns of the rat hippocampal formation. Exp Neurol 52(3):447–458

    Article  CAS  PubMed  Google Scholar 

  22. O’Brien J, Lummis SC (2002) An improved method of preparing microcarriers for biolistic transfection. Brain Res Brain Res Protoc 10(1): 12–15

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cary Soares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Soares, C., Lee, K.F.H., Cook, D., Béïque, JC. (2014). A Cost-Effective Method for Preparing, Maintaining, and Transfecting Neurons in Organotypic Slices. In: Martina, M., Taverna, S. (eds) Patch-Clamp Methods and Protocols. Methods in Molecular Biology, vol 1183. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1096-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1096-0_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1095-3

  • Online ISBN: 978-1-4939-1096-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics