Skip to main content

History of Electrophysiology and the Patch Clamp

  • Protocol
  • First Online:
Book cover Patch-Clamp Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1183))

Abstract

We provide a historic outlook on the development of the concept of bioelectricity, with emphasis on the neuromuscular junction as a model that revolutionized our thinking of the nerve, nervous, and muscle tissue excitability. We abridge some crucial experiments in defining the electrical excitability of biological cells. We also provide an insight into developments of tools and methods, which gradually yielded a contemporary “palette” of electrophysiology approaches, including the patch clamp. Pioneering steps in this journey, ranging from Galvani’s experiments using the Leyden jar to those of Neher and Sakmann using a gigaseal patch-clamp approach, are pictorially illustrated. This chapter is meant to be a perspective to the following sections in this volume dedicated to patch-clamp methods and protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newton I (1713) Principia Mathematica, 2nd edn. University of California Press, Berkeley, CA, English translation by Andrew Motte, Sir Isaac Newton’s Mathematical Principles of Natural Philosophy and his System of the World (1729, reprinted 1934 by the University of California Press)

    Google Scholar 

  2. Clark-Kennedy AE (1929) Stephen Hales, D.D., F.R.S. An eighteenth century biography. Cambridge University Press, London

    Google Scholar 

  3. Hales S (1733) Statical essays: containing haemastaticks; or, an account of some hydraulick and hydrostatical experiments made on the blood and blood-vessels of animals. W. Innys, R. Manby & T. Woodward, London

    Google Scholar 

  4. Haller A (1756–1760) Mémoires sur la nature sensible et irritable des parties du corps animal. Lausanne: M.-M. Bousquet

    Google Scholar 

  5. Piccolino M (2008) Visual images in Luigi Galvani’s path to animal electricity. J Hist Neurosci 17:335–348

    Article  PubMed  Google Scholar 

  6. Piccolino M, Bresadola M (2002) Drawing a spark from darkness: John Walsh and electric fish. Trends Neurosci 25:51–57

    Article  CAS  PubMed  Google Scholar 

  7. Bresadola M (1998) Medicine and science in the life of Luigi Galvani (1737-1798). Brain Res Bull 46:367–380

    Article  CAS  PubMed  Google Scholar 

  8. Piccolino M (1998) Animal electricity and the birth of electrophysiology: the legacy of Luigi Galvani. Brain Res Bull 46:381–407

    Article  CAS  PubMed  Google Scholar 

  9. Swammerdam J (1758) The book of nature (Biblia naturae). Seyfert, London

    Google Scholar 

  10. Stillings D (1975) Did Jan Swammerdam beat Galvani by 134 years? Med Instrum 9:226

    CAS  PubMed  Google Scholar 

  11. Cobb M (2002) Timeline: exorcizing the animal spirits: Jan Swammerdam on nerve function. Nat Rev Neurosci 3:395–400

    Article  CAS  PubMed  Google Scholar 

  12. Galvani L (1791) De viribus electricitatis in motu musculari commentarius. Bon Sci Art Inst Acad Comm 7:363–418

    Google Scholar 

  13. Galvani L (1841) Opere edite ed inedite del Professore Luigi Galvani raccolte e pubblicate dall’Accademia delle Science dell’Istituto di Bologna. Dall’Olmo, Bologna

    Google Scholar 

  14. Galvani L (1794) Dell’uso e dell’attività dell’arco conduttore. S. Tommaso d’Aquino, Bologna

    Google Scholar 

  15. Piccolino M (1997) Luigi Galvani and animal electricity: two centuries after the foundation of electrophysiology. Trends Neurosci 20:443–448

    Article  CAS  PubMed  Google Scholar 

  16. Aldini G. (1803) An account of the late improvements in galvanism, with a series of curious and interesting experiments performed before the commissioners of the French National Institute, and repeated lately in the anatomical theaters of London, by John Aldini.

    Google Scholar 

  17. Aldini G (1804) Essai théorique et expérimental sur le galvanisme (2 vol). Fournier et Fils, Paris

    Google Scholar 

  18. Aldini G (1803) An account of the galvanic experiments performed by John Aldini, Professor of Experimental Physiology in the University of Bologna, &c. on the body of a malefactor executed at Newgate, January 17, 1803. Med Phys J 9:382–385

    Google Scholar 

  19. Nobili L (1828) Comparaison entre les deux galvanometres les plus sensibles, la grenouille et le moltiplicateur a deux aiguilles, suivie de quelques resultats noveaux. Ann Chim Phys 38:225–245

    Google Scholar 

  20. Matteucci C (1844) Traité des phenomenes electro-physiologiques des animaux suivi d’etudes anatomiques sur le systheme nerveux et sur l’organe electrique de la torpille par Paul Savi. Masson et C.ie, Paris

    Google Scholar 

  21. du Bois-Reymond E (1884) Untersuchungen über thierische elektricität, 1848-1884 (2 bande). Reimer, Berlin

    Google Scholar 

  22. Helmholtz H (1850) Note sur la vitesse de propagation de l’agent nerveux dans les nerfs rachidiens. C R Acad Sci (Paris) 30:204–206

    Google Scholar 

  23. Helmholtz H (1852) Messungen über fortpflanzungsgeschwindigkeit der reizung in den nerven–zweite reihe. Arch Anat Physiol Wiss Med 199–216

    Google Scholar 

  24. Piccolino M (2003) A “Lost time” betwen science and literature: the “Temps Perdu” from Hermann von Helmholtz to Marcel Proust. Audiologic Med 1:1–10

    Google Scholar 

  25. Nilius B (2003) Pflugers Archiv and the advent of modern electrophysiology. From the first action potential to patch clamp. Pflugers Arch 447:267–271

    Article  CAS  PubMed  Google Scholar 

  26. Bernstein J (1868) Ueber den zeitlichen Verlauf der negativen Schwankung des Nervenstroms. Pflugers Arch 1:173–207

    Article  Google Scholar 

  27. Bernstein J (1871) Untersuchungen uber den Erregungsvorgang im Nerven- und Muskelsystem. Winter’s Unisersitatsbuchhandlung, Heidelberg

    Google Scholar 

  28. Bernstein J (1912) Elektrobiologie - Die Lehre von den electrischen Vorgangen im Organismus auf moderner Grundlage dargestellt. Vieweg und Sohn, Braunschweig

    Book  Google Scholar 

  29. Overton CE (1902) Betrage zur allgemaine Muskel- und Nervenphysiologie. II Uber die Unentbehrlichkeit von Natrium- (oder Litium-) Ionen fur den Contractionsact des Muskels. Pflugers Arch 92:346–380

    Article  CAS  Google Scholar 

  30. Overton CE (1899) Über die Allgemeinen Osmotischen Eigenschaften der Zelle, ihre vermutlichen Ursachen und ihre Bedeutung für die Physiologie. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 44:88–135

    Google Scholar 

  31. Gorter E, Grendel F (1925) On bimolecular layers of lipids on the chromocytes of the blood. J Exp Med 41:439–443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Danielli JF, Davson H (1935) A Contribution to the theory of permeability of thin films. J Cell Comp Physiol 5:495–508

    Article  CAS  Google Scholar 

  33. Young JZ (1936) Structure of nerve fibres and synapses in some invertebrates. Cold Spring Harbor Symp Quant Biol 4:1–6

    Article  CAS  Google Scholar 

  34. Curtis HJ, Cole KS (1940) Membrane action potentials from the squid giant axon. J Cell Comp Physiol 15:147–157

    Article  Google Scholar 

  35. Hodgkin AL, Huxley AF (1939) Action potentials recorded from inside a nerve fibre. Nature 144:710–711

    Article  Google Scholar 

  36. Cole KS (1949) Dynamic electrical characteristics of the squid axon membrane. Arch Sci Physiol 3:253–258

    CAS  Google Scholar 

  37. Marmont G (1949) Studies on the axon membrane. I. A new method. J Cell Comp Physiol 34:351–382

    Article  CAS  Google Scholar 

  38. Hodgkin AL, Huxley AF (1952) The components of membrane conductance in the giant axon of Loligo. J Physiol 116:473–496

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Hodgkin AL, Huxley AF (1952) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116:449–472

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Hodgkin AL, Huxley AF (1952) The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol 116:497–506

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Hodgkin AL, Huxley AF (1952) Movement of sodium and potassium ions during nervous activity. Cold Spring Harb Symp Quant Biol 17:43–52

    Article  CAS  PubMed  Google Scholar 

  42. Hodgkin AL, Huxley AF (1952) Propagation of electrical signals along giant nerve fibers. Proc R Soc Lond B Biol Sci 140:177–183

    Article  CAS  PubMed  Google Scholar 

  43. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Hodgkin AL, Huxley AF, Katz B (1952) Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol 116:424–448

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Nachmansohn D (1946) Chemical mechanism of nerve activity. Ann N Y Acad Sci 47:395–428

    Article  CAS  Google Scholar 

  46. Nachmansohn D, Neumann E (1975) Chemical and molecular basis of nerve activity. Academic, New York, NY

    Google Scholar 

  47. Verkhratsky A, Krishtal OA, Petersen OH (2006) From Galvani to patch clamp: the development of electrophysiology. Pflugers Arch 453:233–247

    Article  CAS  PubMed  Google Scholar 

  48. Mueller P, Rudin DO, Tien HT et al (1962) Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194:979–980

    Article  CAS  PubMed  Google Scholar 

  49. Mueller P, Rudin DO (1963) Induced excitability in reconstituted cell membrane structure. J Theor Biol 4:268–280

    Article  CAS  PubMed  Google Scholar 

  50. Bean RC, Shepherd WC, Chan H et al (1969) Discrete conductance fluctuations in lipid bilayer protein membranes. J Gen Physiol 53:741–757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Hladky SB, Haydon DA (1970) Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics. Nature 225:451–453

    Article  CAS  PubMed  Google Scholar 

  52. Ling GN, Gerard RW (1949) The normal membrane potential of frog sartorius fibers. J Cell Comp Physiol 34:383–396

    Article  CAS  Google Scholar 

  53. Purves RD (1981) Microelectrode methods for intracellular recording and ionophoresis. Academic, London

    Google Scholar 

  54. Pratt FH, Eisenberger JP (1919) The quantal phenomena in muscle: methods, with further evidence of the all-or-none principle for the skeletal fiber. Am J Physiol 49:1–54

    Google Scholar 

  55. Strickholm A (1961) Impedance of a small electrically isolated area of the muscle cell surface. J Gen Physiol 44:1073–1088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Strickholm A (1962) Excitation currents and impedence of a small electrically isolated area of the muscle cell surface. J Cell Comp Physiol 60:149–167

    Article  CAS  PubMed  Google Scholar 

  57. Frank K, Tauc L (1963) Voltage clamp studies on molluscan neuron membrane properties. In: Hoffman J (ed) The cellular function of membrane transport. Englewood Cliffs, NJ, Prentice Hall

    Google Scholar 

  58. Neher E, Lux HD (1969) Voltage clamp on Helix pomatia neuronal membrane; current measurement over a limited area of the soma surface. Pflugers Arch 311:272–277

    Article  CAS  PubMed  Google Scholar 

  59. Baker PF, Hodgkin AL, Shaw TI (1962) Replacement of the axoplasm of giant nerve fibres with artificial solutions. J Physiol 164:330–354

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Kostyuk PG, Krishtal OA, Pidoplichko VI (1975) Effect of internal fluoride and phosphate on membrane currents during intracellular dialysis of nerve cells. Nature 257:691–693

    Article  CAS  PubMed  Google Scholar 

  61. Kryshtal OA, Pidoplichko VI (1975) Intracellular perfusion of the giant neurons of snails (in Russian). Neirofiziologiia 7:327–329

    CAS  PubMed  Google Scholar 

  62. Kostyuk PG, Krishtal OA, Pidoplichko VI (1977) Asymmetrical displacement currents in nerve cell membrane and effect of internal fluoride. Nature 267:70–72

    Article  CAS  PubMed  Google Scholar 

  63. Pidoplichko VI, Verkhratsky AN (1987) Sodium currents in the membrane of isolated cardiomyocytes. Biomed Biochim Acta 46:S668–S672

    CAS  PubMed  Google Scholar 

  64. Kryshtal OA, Pidoplichko VI (1977) Analysis of current fluctuations shunted from small portions of the membrane of a nerve cell soma (in Russian). Neirofiziologiia 9:644–646

    CAS  PubMed  Google Scholar 

  65. Lee KS, Akaike N, Brown AM (1978) Properties of internally perfused, voltage-clamped, isolated nerve cell bodies. J Gen Physiol 71:489–507

    Article  CAS  PubMed  Google Scholar 

  66. Lee KS, Akaike N, Brown AM (1980) The suction pipette method for internal perfusion and voltage clamp of small excitable cells. J Neurosci Methods 2:51–78

    Article  CAS  PubMed  Google Scholar 

  67. Kostyuk PG, Krishtal OA, Pidoplichko VI (1981) Intracellular perfusion. J Neurosci Methods 4:201–210

    Article  CAS  PubMed  Google Scholar 

  68. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802

    Article  CAS  PubMed  Google Scholar 

  69. Hamill OP, Marty A, Neher E et al (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  CAS  PubMed  Google Scholar 

  70. Sakmann B, Neher E (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol 46:455–472

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ research was supported by Alzheimer’s Research Trust (UK) to A.V. and by National Institutes of Health (The Eunice Kennedy Shriver National Institute of Child Health and Human Development award HD078678) to V.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Verkhratsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Verkhratsky, A., Parpura, V. (2014). History of Electrophysiology and the Patch Clamp. In: Martina, M., Taverna, S. (eds) Patch-Clamp Methods and Protocols. Methods in Molecular Biology, vol 1183. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1096-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1096-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1095-3

  • Online ISBN: 978-1-4939-1096-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics