Skip to main content

The In Vitro Micronucleus Assay and FISH Analysis

  • Protocol
  • First Online:
Genotoxicity and DNA Repair

Abstract

The cytokinesis-block micronucleus cytome (CBMN-cyt) assay was originally established as an ideal system for evaluating chromosomal damage in terms of micronuclei formation. Throughout the years, the micronucleus assay evolved in a comprehensive system for assessing cytogenetic damage, cytostasis and cytotoxicity. The CBMN-cyt assay in peripheral blood lymphocytes and in other cultured mammalian cells is the most common approach to evaluate chromosomal damage induced by environmental agents, including emerging compounds as nanomaterials, and it is the most frequent test system in biomonitoring human populations.

When coupled with fluorescence in situ hybridization (FISH), CBMN-cyt assay is able to reveal the capability to induce structural chromosome aberrations (clastogenic activity) and/or numerical chromosome changes (aneuploidogenic activity).

The methods for CBMN-cyt assay and FISH described here refer to the use of separate lymphocytes and whole blood cultures involving the block of cytokinesis with cytochalasin B (cyt-B) but other cell systems of different origin can be successfully used. This chapter describes in details well-established protocols for sample processing, slide preparation and scoring criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hutchison HE, Ferguson-Smith MA (1959) The significance of Howell-Jolly bodies in red cell precursors. J Clin Pathol 12:451–453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Countryman PI, Heddle JA (1976) The production of micronuclei from chromosome aberrations in irradiated cultures of human lymphocytes. Mutat Res 41(2–3):321–332

    Article  CAS  PubMed  Google Scholar 

  3. Fenech M, Morley A (1985) Solutions to the kinetic problem in the micronucleus assay. Cytobios 43(172–173):233–246

    CAS  PubMed  Google Scholar 

  4. Fenech M (2007) Cytokinesis-block micronucleus cytome assay. Nat Protoc 2:1084–1104

    Article  CAS  PubMed  Google Scholar 

  5. HUMN: HUman MicroNucleus Project. www.humn.org. Accessed 8 Oct 2013

  6. Bonassi S, Fenech M, Lando C et al (2001) HUman MicroNucleus project: international database comparison for results with the cytokinesis-block micronucleus assay in human lymphocytes: I. Effect of laboratory protocol, scoring criteria, and host factors on the frequency of micronuclei. Environ Mol Mutagen 37(1):31–45

    Article  CAS  PubMed  Google Scholar 

  7. Bonassi S, Neri M, Lando C et al (2003) Effect of smoking habit on the frequency of micronuclei in human lymphocytes: results from the Human MicroNucleus project. Mutat Res 543(2):155–166

    Article  CAS  PubMed  Google Scholar 

  8. Fenech M, Chang WP, Kirsch-Volders M et al (2003) HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res 534(1–2):65–75

    Article  CAS  PubMed  Google Scholar 

  9. Bonassi S, Biasotti B, Kirsch-Volders M et al (2009) State of the art survey of the buccal micronucleus assay—a first stage in the HUMN(XL) project initiative. Mutagenesis 24(4):295–302

    Article  CAS  PubMed  Google Scholar 

  10. Fenech M, Holland N, Chang WP et al (1999) The HUman MicroNucleus Project—An international collaborative study on the use of the micronucleus technique for measuring DNA damage in humans. Mutat Res 428(1–2):271–283

    Article  CAS  PubMed  Google Scholar 

  11. Bonassi S, Znaor A, Ceppi M et al (2007) An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis 28(3):625–631

    Article  CAS  PubMed  Google Scholar 

  12. Corvi R, Albertini S, Hartung T et al (2008) ECVAM retrospective validation of in vitro micronucleus test (MNT). Mutagenesis 23(4):271–283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. OECD. In vitro Mammalian Cell Micronucleus Test (MNvit). OECD Guideline for Testing of Chemicals No. 487. OECD, Paris. http://www.oecd.org/env/testguidelines

  14. Fenech M, Kirsch-Volders M, Natarajan AT et al (2011) Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 26(1):125–132

    Article  CAS  PubMed  Google Scholar 

  15. Fenech M (2010) The lymphocyte cytokinesis-block micronucleus cytome assay and its application in radiation biodosimetry. Health Phys 98:234–243

    Article  CAS  PubMed  Google Scholar 

  16. Hoffelder DR, Luo L, Burke NA et al (2004) Resolution of anaphase bridges in cancer cells. Chromosoma 112:389–397

    Article  PubMed  Google Scholar 

  17. Fenech M (2006) Cytokinesis-block micronucleus assay evolves into a “cytome” assay of chromosomal instability, mitotic dysfunction and cell death. Mutat Res 600(1–2):58–66

    Article  CAS  PubMed  Google Scholar 

  18. Gisselsson D (2008) Classification of chromosome segregation errors in cancer. Chromosoma 117:511–519

    Article  PubMed  Google Scholar 

  19. Guerrero AA, Gamero MC, Trachana V et al (2010) Centromere-localized breaks indicate the generation of DNA damage by the mitotic spindle. Proc Natl Acad Sci U S A 107(9):4159–4164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Payne CM, Crowley-Skillicorn C, Bernstein C et al (2010) Hydrophobic bile acid-induced micronuclei formation, mitotic perturbations, and decreases in spindle checkpoint proteins: relevance to genomic instability in colon carcinogenesis. Nutr Cancer 62(6):825–840

    Article  CAS  PubMed  Google Scholar 

  21. Fenech M, Baghurst P, Luderer W et al (2005) Low intake of calcium, folate, nicotinic acid, vitamin E, retinol, beta-carotene and high intake of pantothenic acid, biotin and riboflavin are significantly associated with increased genome instability—results from a dietary intake and micronucleus index survey in South Australia. Carcinogenesis 26:991–999

    Article  CAS  PubMed  Google Scholar 

  22. Schueler MG, Sullivan BA (2006) Structural and functional dynamics of human centromeric chromatin. Annu Rev Genomics Hum Genet 7:301–313

    Article  CAS  PubMed  Google Scholar 

  23. Xu GL, Bestor TH, Bourc’his D et al (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402(6758):187–191

    Article  CAS  PubMed  Google Scholar 

  24. Suzuki T, Fujii M, Ayusawa D (2002) Demethylation of classical satellite 2 and 3 DNA with chromosomal instability in senescent human fibroblasts. Exp Gerontol 37(8–9):1005–1014

    Article  CAS  PubMed  Google Scholar 

  25. Putiri EL, Robertson KD (2011) Epigenetic mechanisms and genome stability. Clin Epigenetics 2(2):299–314

    Article  PubMed Central  PubMed  Google Scholar 

  26. Hovhannisyan G, Aroutiounian R, Liehr T (2012) Chromosomal composition of micronuclei in human leukocytes exposed to mitomycin C. J Histochem Cytochem 60(4):316–322

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Gieni RS, Chan G, Hendzel MJ (2008) Epigenetics regulate centromere formation and kinetochore function. J Cell Biochem 104:2027–2039

    Article  CAS  PubMed  Google Scholar 

  28. Hayden KE, Strome ED, Merrett SL et al (2013) Sequences associated with centromere competency in the human genome. Mol Cell Biol 33(4):763–772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Thomas P, Umegaki K, Fenech M (2003) Nucleoplasmic bridges are a sensitive measure of chromosome rearrangement in the cytokinesis-block micronucleus assay. Mutagenesis 18(2):187–194

    Article  CAS  PubMed  Google Scholar 

  30. Thomas P, Fenech M (2011) Cytokinesis-block micronucleus cytome assay in lymphocytes. Methods Mol Biol 682:217–234

    Article  CAS  PubMed  Google Scholar 

  31. Acilan C, Potter DM, Saunders WS (2007) DNA repair pathways involved in anaphase bridge formation. Genes Chromosomes Cancer 46(6):522–531

    Article  CAS  PubMed  Google Scholar 

  32. Sofueva S, Osman F, Lorenz A et al (2011) Ultrafine anaphase bridges, broken DNA and illegitimate recombination induced by a replication fork barrier. Nucleic Acids Res 39(15):6568–6584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Murnane JP (2012) Telomere dysfunction and chromosome instability. Mutat Res 730(1–2):28–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Pampalona J, Frías C, Genescà A et al (2012) Progressive telomere dysfunction causes cytokinesis failure and leads to the accumulation of polyploid cells. PLoS Genet 8(4):e1002679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Shimizu N, Shimura T, Tanaka T (2000) Selective elimination of acentric double minutes from cancer cells through the extrusion of micronuclei. Mutat Res 448(1):81–90

    Article  CAS  PubMed  Google Scholar 

  36. Dutra A, Pak E, Wincovitch S et al (2010) Nuclear bud formation: a novel manifestation of Zidovudine genotoxicity. Cytogenet Genome Res 128(1–3):105–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Utani K, Kohno Y, Okamoto A et al (2010) Emergence of micronuclei and their effects on the fate of cells under replication stress. PLoS One 5(4):e10089

    Article  PubMed Central  PubMed  Google Scholar 

  38. Montero R, Serrano L, Ostrosky P (1997) In vitro induction of micronuclei in lymphocytes: the use of bromodeoxyuridine as a proliferation marker. Mutat Res 391:135–141

    Article  Google Scholar 

  39. Serrano-García L, Montero-Montoya R (2001) Micronuclei and chromatid buds are the result of related genotoxic events. Environ Mol Mutagen 38(1):38–45

    Article  PubMed  Google Scholar 

  40. Haaf T, Raderschall E, Reddy G et al (1999) Sequestration of mammalian Rad51-recombination protein into micronuclei. J Cell Biol 144(1):11–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Leach NT, Jackson-Cook C (2004) Micronuclei with multiple copies of the X chromosome: do chromosomes replicate in micronuclei? Mutat Res 554:89–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Mateuca R, Lombaert N, Aka PV et al (2006) Chromosomal changes: induction, detection methods and applicability in human biomonitoring. Biochimie 88(11):1515–1531

    Article  CAS  PubMed  Google Scholar 

  43. Decordier I, Dillen L, Cundari E et al (2002) Elimination of micronucleated cells by apoptosis after treatment with inhibitors of microtubules. Mutagenesis 17:337–344

    Article  CAS  PubMed  Google Scholar 

  44. Terradas M, Martín M, Tusell L et al (2010) Genetic activities in micronuclei: is the DNA entrapped in micronuclei lost for the cell? Mutat Res 705:60–67

    Article  CAS  PubMed  Google Scholar 

  45. Kirsch-Volders M, Plas G, Elhajouji A et al (2011) The in vitro MN assay in 2011: origin and fate, biological significance, protocols, high throughput methodologies and toxicological relevance. Arch Toxicol 85(8):873–899

    Article  CAS  PubMed  Google Scholar 

  46. Decordier I, Cundari E, Kirsch-Volders M (2005) Influence of caspase activity on micronuclei detection: a possible role for caspase-3 in micronucleation. Mutagenesis 20:173–179

    Article  CAS  PubMed  Google Scholar 

  47. Yasui M, Koyama N, Koizumi T et al (2010) Live cell imaging of micronucleus formation and development. Mutat Res 692:12–18

    Article  CAS  PubMed  Google Scholar 

  48. Matsushima T, Hayashi M, Matsuoka A et al (1999) Validation study of the in vitro micronucleus test in a Chinese hamster lung cell line (CHL/IU). Mutagenesis 14(6):569–580

    Article  CAS  PubMed  Google Scholar 

  49. Lorge E, Thybaud V, Aardema MJ et al (2006) SFTG international collaborative study on in vitro micronucleus test I. General conditions and overall conclusions of the study. Mutat Res 607(1):13–36

    Article  CAS  PubMed  Google Scholar 

  50. Sobol Z, Homiski ML, Dickinson DA et al (2012) Development and validation of an in vitro micronucleus assay platform in TK6 cells. Mutat Res 746(1):29–34

    Article  CAS  PubMed  Google Scholar 

  51. Westerink WM, Schirris TJ, Horbach GJ et al (2011) Development and validation of a high-content screening in vitro micronucleus assay in CHO-k1 and HepG2 cells. Mutat Res 724(1–2):7–21

    Article  CAS  PubMed  Google Scholar 

  52. Gonzalez L, Thomassen LC, Plas G et al (2010) Exploring the aneugenic and clastogenic potential in the nanosize range: A549 human lung carcinoma cells and amorphous monodisperse silica nanoparticles as models. Nanotoxicology 4:382–395

    Article  PubMed  Google Scholar 

  53. Schmuck G, Lieb G, Wild D et al (1988) Characterization of an in vitro micronucleus assay with Syrian hamster embryo fibroblasts. Mutat Res 203(6):397–404

    Article  CAS  PubMed  Google Scholar 

  54. Parry EM, Parry JM, Corso C et al (2002) Detection and characterization of mechanisms of action of aneugenic chemicals. Mutagenesis 17(6):509–521

    Article  CAS  PubMed  Google Scholar 

  55. Yamamoto KI, Kikuchi Y (1980) A comparison of diameters of micronuclei induced by clastogens and by spindle poisons. Mutat Res 71(1):127–131

    Article  CAS  PubMed  Google Scholar 

  56. Vig BK, Swearngin SE (1986) Sequence of centromere separation: kinetochore formation in induced laggards and micronuclei. Mutagenesis 1(6):461–465

    Article  CAS  PubMed  Google Scholar 

  57. Eastmond DA, Tucker JD (1989) Identification of aneuploidy-inducing agents using cytokinesis-blocked human lymphocytes and an antikinetochore antibody. Environ Mol Mutagen 13(1):34–43

    Article  CAS  PubMed  Google Scholar 

  58. Migliore L, Bocciardi R, Macrì C et al (1993) Cytogenetic damage induced in human lymphocytes by four vanadium compounds and micronucleus analysis by fluorescence in situ hybridization with a centromeric probe. Mutat Res 319(3):205–213

    Article  CAS  PubMed  Google Scholar 

  59. Migliore L, Zotti-Martelli L, Scarpato R (1999) Detection of chromosome loss and gain induced by griseofulvin, estramustine, and vanadate in binucleated lymphocytes using FISH analysis. Environ Mol Mutagen 34(1):64–68

    Article  CAS  PubMed  Google Scholar 

  60. Guttenbach M, Schmid M (1994) Exclusion of specific human chromosomes into micronuclei by 5-azacytidine treatment of lymphocyte cultures. Exp Cell Res 211(1):127–132

    Article  CAS  PubMed  Google Scholar 

  61. Herrera LA, Prada D, Andonegui MA et al (2008) The epigenetic origin of aneuploidy. Curr Genomics 9(1):43–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect 113:823–839

    Article  CAS  Google Scholar 

  63. Pfuhler S, Elespuru R, Aardema MJ et al (2013) Genotoxicity of nanomaterials: refining strategies and tests for hazard identification. Environ Mol Mutagen 54(4):229–239

    Article  CAS  PubMed  Google Scholar 

  64. Sargent LM, Shvedova AA, Hubbs AF et al (2009) Induction of aneuploidy by single-walled carbon nanotubes. Environ Mol Mutagen 50:708–717

    Article  CAS  PubMed  Google Scholar 

  65. Di Bucchianico S, Fabbrizi MR, Misra SK et al (2013) Multiple cytotoxic and genotoxic effects induced in vitro by differently shaped copper oxide nanomaterials. Mutagenesis 28(3):287–299

    Article  PubMed  Google Scholar 

  66. Landsiedel R, Kapp MD, Schulz M et al (2009) Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations—many questions, some answers. Mutat Res 681(2–3):241–258

    Article  CAS  PubMed  Google Scholar 

  67. Warheit DB, Donner EM (2010) Rationale of genotoxicity testing of nanomaterials: regulatory requirements and appropriateness of available OECD test guidelines. Nanotoxicology 4:409–413

    Article  CAS  PubMed  Google Scholar 

  68. Doak SH, Griffiths SM, Manshian B et al (2009) Confounding experimental considerations in nanogenotoxicology. Mutagenesis 24:285–293

    Article  CAS  PubMed  Google Scholar 

  69. Doak SH, Manshian B, Jenkins GJS et al (2012) In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines. Mutat Res 745:104–111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Gonzalez L, Sanderson BJ, Kirsch-Volders M (2011) Adaptations of the in vitro MN assay for the genotoxicity assessment of nanomaterials. Mutagenesis 26(1):185–191

    Article  CAS  PubMed  Google Scholar 

  71. Singh N, Manshian B, Jenkins GJS et al (2009) NanoGenotoxicology: the DNA damaging potential of nanomaterials. Biomaterials 30:3891–3914

    Article  CAS  PubMed  Google Scholar 

  72. Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455(1–2):81–95

    Article  CAS  PubMed  Google Scholar 

  73. Corradi S, Gonzalez L, Thomassen LC et al (2012) Influence of serum on in situ proliferation and genotoxicity in A549 human lung cells exposed to nanomaterials. Mutat Res 745(1–2):21–27

    Article  CAS  PubMed  Google Scholar 

  74. Gonzalez L, Lukamowicz-Rajska M, Thomassen LC et al (2014) Co-assessment of cell cycle and micronucleus frequencies demonstrates the influence of serum on the in vitro genotoxic response to amorphous monodisperse silica nanoparticles of varying sizes. Nanotoxicology 8(8):876–884

    Article  CAS  PubMed  Google Scholar 

  75. Prasad RY, Wallace K, Daniel KM et al (2013) Effect of treatment media on the agglomeration of titanium dioxide nanoparticles: impact on genotoxicity, cellular interaction, and cell cycle. ACS Nano 7(3):1929–1942

    Article  CAS  PubMed  Google Scholar 

  76. Von der Hude W, Kalweit S, Engelhardt G et al (2000) In vitro micronucleus assay with Chinese hamster V79 cells—results of a collaborative study with in situ exposure to 26 chemical substances. Mutat Res 468(2):137–163

    Article  PubMed  Google Scholar 

  77. Kirsch-Volders M, Sofuni T, Aardema M et al (2003) Report from the in vitro micronucleus assay working group. Mutat Res 540(2):153–163

    Article  CAS  PubMed  Google Scholar 

  78. Fenech M, Holland N, Zeiger E et al (2011) The HUMN and HUMNxL international collaboration projects on human micronucleus assays in lymphocytes and buccal cells—past, present and future. Mutagenesis 26(1):239–425

    Article  CAS  PubMed  Google Scholar 

  79. Knasmueller S, Holland N, Wultsch G et al (2011) Use of nasal cells in micronucleus assays and other genotoxicity studies. Mutagenesis 26(1):231–238

    Article  CAS  PubMed  Google Scholar 

  80. Ohyama W, Okada E, Fujiishi Y et al (2013) In vivo rat glandular stomach and colon micronucleus tests: kinetics of micronucleated cells, apoptosis, and cell proliferation in the target tissues after a single oral administration of stomach- or colon-carcinogens. Mutat Res 755(2):141–147

    Article  CAS  PubMed  Google Scholar 

  81. Grawé J, Zetterberg G, Amnéus H (1992) Flow-cytometric enumeration of micronucleated polychromatic erythrocytes in mouse peripheral blood. Cytometry 13(7):750–758

    Article  PubMed  Google Scholar 

  82. Grawé J, Biko J, Lorenz R et al (2005) Evaluation of the reticulocyte micronucleus assay in patients treated with radioiodine for thyroid cancer. Mutat Res 583(1):12–25

    Article  PubMed  Google Scholar 

  83. Dertinger SD, Miller RK, Brewer K et al (2007) Automated human blood micronucleated reticulocyte measurements for rapid assessment of chromosomal damage. Mutat Res 626(1–2):111–119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Flanagan JM, Howard TA, Mortier N et al (2010) Assessment of genotoxicity associated with hydroxyurea therapy in children with sickle cell anemia. Mutat Res 698(1–2):38–42

    Article  CAS  PubMed  Google Scholar 

  85. Witt KL, Livanos E, Kissling GE et al (2008) Comparison of flow cytometry- and microscopy-based methods for measuring micronucleated reticulocyte frequencies in rodents treated with nongenotoxic and genotoxic chemicals. Mutat Res 649(1–2):101–113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Darzynkiewicz Z, Smolewski P, Holden E et al (2011) Laser scanning cytometry for automation of the micronucleus assay. Mutagenesis 26(1):153–161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

SDB and CU are granted by the FP7 project No 280716, SANOWORK (www.sanowork.eu). We would like to acknowledge Davide Tesoro for drawing figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Migliore .

Editor information

Editors and Affiliations

Glossary

BN

Binucleated cells

BNMN

Binucleated micronucleated cells

BrdU

Bromodeoxyuridine

CBMN

Cytokinesis-block micronucleus

CBMN-cyt

Cytokinesis-block micronucleus cytome

CBPI

Cytokinesis-block proliferation index

CENP-A

Centromere protein A

CENP-B

Centromere protein B

cyt-B

Cytochalasin-B

DAPI

4′,6-Diamidin-2-fenilindolo

DMSO

Dimethylsulfoxide

DNA

Deoxyribonucleic acid

FBS

Foetal bovine serum

FISH

Fluorescence in situ hybridization

HBSS

Hank’s balanced salt solution

MN

Micronucleus/i

MN C

Micronucleus/i centromere negative

MN C+

Micronucleus/i centromere positive

NBUD

Nuclear bud/s

NM

Nanomaterial/s

NPB

Nucleoplasmic bridge/s

PBS

Phosphate-buffered solution

PHA

Phytohemagglutinin

PI

Proliferation index

RICC

Relative increase in cell counts

RT

Room temperature

SSC

Sodium chloride/sodium citrate

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Migliore, L., Di Bucchianico, S., Uboldi, C. (2014). The In Vitro Micronucleus Assay and FISH Analysis. In: Sierra, L., Gaivão, I. (eds) Genotoxicity and DNA Repair. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1068-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1068-7_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1067-0

  • Online ISBN: 978-1-4939-1068-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics