Skip to main content

Use of RNA Interference to Study DNA Repair

  • Protocol
  • First Online:
Genotoxicity and DNA Repair

Abstract

DNA repair pathways maintain the integrity of the genome and thereby help prevent the onset of cancer, disease, and aging phenotypes [DNA Repair and Mutagenesis, ASM, Washington, DC]. As such, the critical requirement for DNA repair proteins and pathways in response to radiation and genotoxic chemotherapeutics implicates DNA repair proteins as prime targets for improving response to currently available anticancer regimens. Although defects in critical DNA repair pathways or proteins can predispose to cancer onset [FASEB J 26:2094–2104, 2012], such cancer-specific DNA repair defects offer novel approaches for tumor-selective therapy.

To effectively evaluate the functional role of a specific DNA repair protein with regard to cell survival, response to genotoxins, and genome stability, it has become standard practice to employ select genetic tools to alter expression of the gene of interest and/or reexpress a mutant transgene [Cancer Res 71:2308–2317, 2011; Mol Cancer Res 8:67–79, 2010; Neuro Oncol 13:471–486, 2011]. A useful approach to reduce or suppress a specific gene of interest in cells is RNA interference. Briefly, RNA interference is a posttranscriptional gene-silencing biological mechanism whereby RNA molecules inhibit gene expression either by translational suppression or by the targeted degradation of specific mRNA molecules. Once the gene of interest is suppressed in this manner and validated for gene expression loss, the resulting knockdown (KD) cells can be used for functional analysis to define the cellular impact of gene loss and provide a resource for evaluating mutants of the gene, such as somatic or germ-line mutations, for impact on function [PLoS Genet 8:e1003086, 2012]. Herein, we describe methods to modify human cells via RNA interference as well as methods to validate gene KD and some measures of cellular response to genotoxins to uncover functional DNA repair defects in the absence of the gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dykxhoorn DM, Novina CD, Sharp PA (2003) Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4:457–467

    Article  CAS  PubMed  Google Scholar 

  2. Mcmanus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747

    Article  CAS  PubMed  Google Scholar 

  3. Paddison PJ, Hannon GJ (2002) RNA interference: the new somatic cell genetics? Cancer Cell 2:17–23

    Article  CAS  PubMed  Google Scholar 

  4. Schurmann N, Trabuco LG, Bender C et al (2013) Molecular dissection of human Argonaute proteins by DNA shuffling. Nat Struct Mol Biol 20:818–826

    Article  PubMed  Google Scholar 

  5. Caplen NJ, Parrish S, Imani F et al (2001) Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci U S A 98:9742–9747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  PubMed  Google Scholar 

  7. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  8. Izquierdo M (2005) Short interfering RNAs as a tool for cancer gene therapy. Cancer Gene Ther 12:217–227

    Article  CAS  PubMed  Google Scholar 

  9. Ullu E, Djikeng A, Shi H et al (2002) RNA interference: advances and questions. Philos Trans R Soc Lond B Biol Sci 357:65–70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Svilar D, Dyavaiah M, Brown AR et al (2012) Alkylation sensitivity screens reveal a conserved cross-species functionome. Mol Cancer Res 10:1580–1596

    Article  CAS  PubMed  Google Scholar 

  11. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  CAS  PubMed  Google Scholar 

  12. Paddison PJ, Caudy AA, Hannon GJ (2002) Stable suppression of gene expression by RNAi in mammalian cells. Proc Natl Acad Sci U S A 99:1443–1448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Yu JY, Deruiter SL, Turner DL (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A 99:6047–6052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Javanbakht H, Halwani R, Cen S et al (2003) The interaction between HIV-1 Gag and human lysyl-tRNA synthetase during viral assembly. J Biol Chem 278:27644–27651

    Article  CAS  PubMed  Google Scholar 

  15. Tang J, Goellner EM, Wang XW et al (2010) Bioenergetic metabolites regulate base excision repair-dependent cell death in response to DNA damage. Mol Cancer Res 8:67–79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Rubinson DA, Dillon CP, Kwiatkowski AV et al (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33:401–406

    Article  CAS  PubMed  Google Scholar 

  17. Goellner EM, Grimme B, Brown AR et al (2011) Overcoming temozolomide resistance in glioblastoma via dual inhibition of NAD+ biosynthesis and base excision repair. Cancer Res 71:2308–2317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Mutamba JT, Svilar D, Prasongtanakij S et al (2011) XRCC1 and base excision repair balance in response to nitric oxide. DNA Repair (Amst) 10:1282–1293

    Article  CAS  Google Scholar 

  19. Heid CA, Stevens J, Livak KJ et al (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  CAS  PubMed  Google Scholar 

  20. Semizarov D, Frost L, Sarthy A et al (2003) Specificity of short interfering RNA determined through gene expression signatures. Proc Natl Acad Sci U S A 100:6347–6352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Trivedi RN, Wang XH, Jelezcova E et al (2008) Human methyl purine DNA glycosylase and DNA polymerase ß expression collectively predict sensitivity to temozolomide. Mol Pharmacol 74:505–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Tang JB, Svilar D, Trivedi RN et al (2011) N-methylpurine DNA glycosylase and DNA polymerase beta modulate BER inhibitor potentiation of glioma cells to temozolomide. Neuro Oncol 13:471–486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Wang S, Sim TB, Kim YS et al (2004) Tools for target identification and validation. Curr Opin Chem Biol 8:371–377

    Article  CAS  PubMed  Google Scholar 

  24. Friedberg EC, Walker GC, Siede W et al (2006) DNA repair and mutagenesis, 2nd edn. ASM, Washington, DC

    Google Scholar 

  25. Sirbu BM, Cortez D (2013) DNA damage response: three levels of DNA repair regulation. Cold Spring Harb Perspect Biol 5:a012724

    Article  PubMed  Google Scholar 

  26. Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28:739–745

    Article  CAS  PubMed  Google Scholar 

  27. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Hassa PO, Haenni SS, Elser M et al (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 70:789–829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hottiger MO, Hassa PO, Luscher B et al (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35:208–219

    Article  CAS  PubMed  Google Scholar 

  30. Rulten SL, Fisher AE, Robert I et al (2011) PARP-3 and APLF function together to accelerate nonhomologous end-joining. Mol Cell 41:33–45

    Article  CAS  PubMed  Google Scholar 

  31. Almeida KH, Sobol RW (2007) A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair 6:695–711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Audebert M, Salles B, Calsou P (2004) Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem 279:55117–55126

    Article  CAS  PubMed  Google Scholar 

  33. Audebert M, Salles B, Weinfeld M et al (2006) Involvement of polynucleotide kinase in a poly(ADP-ribose) polymerase-1-dependent DNA double-strand breaks rejoining pathway. J Mol Biol 356:257–265

    Article  CAS  PubMed  Google Scholar 

  34. Couto CA, Wang HY, Green JC et al (2011) PARP regulates nonhomologous end joining through retention of Ku at double-strand breaks. J Cell Biol 194:367–375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Mansour WY, Rhein T, Dahm-Daphi J (2010) The alternative end-joining pathway for repair of DNA double-strand breaks requires PARP1 but is not dependent upon microhomologies. Nucleic Acids Res 38:6065–6077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Mitchell J, Smith GC, Curtin NJ (2009) Poly(ADP-Ribose) polymerase-1 and DNA-dependent protein kinase have equivalent roles in double strand break repair following ionizing radiation. Int J Radiat Oncol Biol Phys 75:1520–1527

    Article  CAS  PubMed  Google Scholar 

  37. Pears CJ, Couto CA, Wang HY et al (2012) The role of ADP-ribosylation in regulating DNA double-strand break repair. Cell Cycle 11:48–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Robert I, Dantzer F, Reina-San-Martin B (2009) Parp1 facilitates alternative NHEJ, whereas Parp2 suppresses IgH/c-myc translocations during immunoglobulin class switch recombination. J Exp Med 206:1047–1056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Wang M, Wu W, Wu W et al (2006) PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res 34:6170–6182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Sobol RW (2012) Genome instability caused by a germline mutation in the human DNA repair gene POLB. PLoS Genet 8:e1003086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Alberts B (2009) Redefining cancer research. Science 325:1319

    Article  CAS  PubMed  Google Scholar 

  42. Berridge MV, Tan AS (1993) Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 303:474–482

    Article  CAS  PubMed  Google Scholar 

  43. Kooistra SM, Helin K (2012) Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol 13:297–311

    CAS  PubMed  Google Scholar 

  44. Jones LJ, Gray M, Yue ST et al (2001) Sensitive determination of cell number using the CyQUANT cell proliferation assay. J Immunol Methods 254:85–98

    Article  CAS  PubMed  Google Scholar 

  45. Chi P, Allis CD, Wang GG (2010) Covalent histone modifications—miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 10:457–469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Goellner EM, Svilar D, Almeida KH et al (2012) Targeting DNA polymerase ß for therapeutic intervention. Curr Mol Pharmacol 5:68–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. KeimLing M, Deniz M, Varga D et al (2012) The power of DNA double-strand break (DSB) repair testing to predict breast cancer susceptibility. FASEB J 26:2094–2104

    Article  CAS  PubMed  Google Scholar 

  48. Shamma A, Takegami Y, Miki T et al (2009) Rb Regulates DNA damage response and cellular senescence through E2F-dependent suppression of N-ras isoprenylation. Cancer Cell 15:255–269

    Article  CAS  PubMed  Google Scholar 

  49. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Mccabe N, Turner NC, Lord CJ et al (2006) Deficiency in the repair of DNA damage by homologous recombination and sensitivity to Poly(ADP-Ribose) polymerase inhibition. Cancer Res 66:8109–8115

    Article  CAS  PubMed  Google Scholar 

  51. Ame JC, Fouquerel E, Gauthier LR et al (2009) Radiation-induced mitotic catastrophe in PARG-deficient cells. J Cell Sci 122:1990–2002

    Article  CAS  PubMed  Google Scholar 

  52. Jelezcova E, Trivedi RN, Wang XH et al (2010) Parp1 activation in mouse embryonic fibroblasts promotes Pol beta-dependent cellular hypersensitivity to alkylation damage. Mutat Res 686:57–67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institute of Health (NIH) (CA148629, GM087798, and GM099213) to R.W.S. Support for the UPCI Lentiviral Facility was provided by the Cancer Center Support Grant from the National Institutes of Health (CA047904).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Sobol Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fouquerel, E. et al. (2014). Use of RNA Interference to Study DNA Repair. In: Sierra, L., Gaivão, I. (eds) Genotoxicity and DNA Repair. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1068-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1068-7_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1067-0

  • Online ISBN: 978-1-4939-1068-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics