Skip to main content

A Standardized Protocol for the In Vitro Comet-Based DNA Repair Assay

  • Protocol
  • First Online:
Genotoxicity and DNA Repair

Abstract

DNA repair is regarded as an important biomarker to be measured alongside DNA damage when considering the risk of cancer from environmental or genetic causes. Efficient repair deals with DNA lesions before they can disrupt replication and create mutations. Repair capacity can be readily assessed using an in vitro comet-based DNA repair assay, which is particularly useful in human biomonitoring studies where many samples are collected over an extended period, stored frozen, and analyzed at a later date. In this assay, a protein lysate is extracted from studied cells or tissues and is incubated with damage-containing substrate DNA. Repair proteins in extract are able to recognize and incise DNA lesions and cumulate DNA breaks, which are quantified with the comet assay. Here we provide detailed protocols for the in vitro estimation of base excision repair (on a substrate containing 8-oxoguanine induced by visible light in the presence of a photosensitizer) and nucleotide excision repair (with UV-induced pyrimidine dimers and 6-4 photoproducts as substrate). We describe the preparation of extracts from different kinds of source material (cultured cells, peripheral blood mononuclear cells, animal tissues, human biopsies) and emphasize the need for careful control of the extract concentration. Furthermore, we discuss not only conventional comet assay format (2 gels on microscope slide), but also a medium-throughput version (12 minigels in microscope slide), which is recommended for reduction of experimental variability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collins AR, Fleming IM, Gedik CM (1994) In vitro repair of oxidative and ultraviolet-induced DNA damage in supercoiled nucleoid DNA by human cell extract. Biochim Biophys Acta 1219(3):724–727

    Article  PubMed  Google Scholar 

  2. Collins AR, Dusinska M, Horvathova E et al (2001) Inter-individual differences in repair of DNA base oxidation, measured in vitro with the comet assay. Mutagenesis 16(4):297–301

    Article  CAS  PubMed  Google Scholar 

  3. Langie SA, Knaapen AM, Brauers KJ et al (2006) Development and validation of a modified comet assay to phenotypically assess nucleotide excision repair. Mutagenesis 21(2):153–158

    Article  CAS  PubMed  Google Scholar 

  4. Gaivao I, Piasek A, Brevik A et al (2009) Comet assay-based methods for measuring DNA repair in vitro; estimates of inter- and intra-individual variation. Cell Biol Toxicol 25(1):45–52

    Article  CAS  PubMed  Google Scholar 

  5. Langie SA, Cameron KM, Waldron KJ et al (2011) Measuring DNA repair incision activity of mouse tissue extracts towards singlet oxygen-induced DNA damage: a comet-based in vitro repair assay. Mutagenesis 26(3):461–471

    Article  CAS  PubMed  Google Scholar 

  6. Langie SA, Kowalczyk P, Tudek B et al (2010) The effect of oxidative stress on nucleotide-excision repair in colon tissue of newborn piglets. Mutat Res 695(1–2):75–80

    Article  CAS  PubMed  Google Scholar 

  7. Slyskova J, Korenkova V, Collins AR et al (2012) Functional, genetic, and epigenetic aspects of base and nucleotide excision repair in colorectal carcinomas. Clin Cancer Res 18(21):5878–5887

    Article  CAS  PubMed  Google Scholar 

  8. Azqueta A, Langie SA, Slyskova J et al (2013) Measurement of DNA base and nucleotide excision repair activities in mammalian cells and tissues using the comet assay: a methodological overview. DNA Repair 12(11):1007–1010

    Article  CAS  PubMed  Google Scholar 

  9. Collins AR, Oscoz AA, Brunborg G et al (2008) The comet assay: topical issues. Mutagenesis 23(3):143–151

    Article  CAS  PubMed  Google Scholar 

  10. Forchhammer L, Johansson C, Loft S et al (2009) Variation in the measurement of DNA damage by comet assay measured by the ECVAG inter-laboratory validation trial. Mutagenesis 25(2):113–123

    Article  PubMed  Google Scholar 

  11. Langie SA, Wilms LC, Hamalainen S et al (2010) Modulation of nucleotide excision repair in human lymphocytes by genetic and dietary factors. Br J Nutr 103(4):490–501

    Article  CAS  PubMed  Google Scholar 

  12. Godschalk RW, Ersson C, Riso P et al (2013) DNA-repair measurements by use of the modified comet assay: an inter-laboratory comparison within the European Comet Assay Validation Group (ECVAG). Mutat Res 757(1):60–67

    Article  CAS  PubMed  Google Scholar 

  13. Shaposhnikov S, Azqueta A, Henriksson S et al (2010) Twelve-gel slide format optimised for comet assay and fluorescent in situ hybridisation. Toxicol Lett 195(1):31–34

    Article  CAS  PubMed  Google Scholar 

  14. Azqueta A, Gutzkov KB, Priestley CC et al (2013) A comparative performance test of standard, medium- and high-throughput comet assays. Toxicol In Vitro 27(2):768–773

    Article  CAS  PubMed  Google Scholar 

  15. Collins AR, Azqueta A (2012) DNA repair as a biomarker in human biomonitoring studies; further applications of the comet assay. Mutat Res 736(1–2):122–129

    Article  CAS  PubMed  Google Scholar 

  16. Guarnieri S, Loft S, Riso P et al (2008) DNA repair phenotype and dietary antioxidant supplementation. Br J Nutr 99(5):1018–1024

    Article  CAS  PubMed  Google Scholar 

  17. Brevik A, Karlsen A, Azqueta A et al (2011) Both base excision repair and nucleotide excision repair in humans are influenced by nutritional factors. Cell Biochem Funct 29(1):36–42

    Article  CAS  PubMed  Google Scholar 

  18. Collins AR, Harrington V, Drew J et al (2003) Nutritional modulation of DNA repair in a human intervention study. Carcinogenesis 24(3):511–515

    Article  CAS  PubMed  Google Scholar 

  19. Caple F, Williams EA, Spiers A et al (2010) Inter-individual variation in DNA damage and base excision repair in young, healthy non-smokers: effects of dietary supplementation and genotype. Br J Nutr 103(11):1585–1593

    Article  CAS  PubMed  Google Scholar 

  20. Riso P, Martini D, Moller P et al (2010) DNA damage and repair activity after broccoli intake in young healthy smokers. Mutagenesis 25(6):595–602

    Article  CAS  PubMed  Google Scholar 

  21. Slyskova J, Lorenzo Y, Karlsen A et al (2014) Both genetic and dietary factors underlie differences in DNA damage levels and DNA repair capacity. DNA repair 16:66–73

    Google Scholar 

  22. Langie SA, Achterfeldt S, Gorniak JP et al (2013) Maternal folate depletion and high-fat feeding from weaning affects DNA methylation and DNA repair in brain of adult offspring. FASEB J 27(8):3323–3334

    Article  CAS  PubMed  Google Scholar 

  23. Collins AR, Azqueta A, Langie SA (2012) Effects of micronutrients on DNA repair. Eur J Nutr 51(3):261–279

    Article  CAS  PubMed  Google Scholar 

  24. Dusinska M, Collins A, Kazimirova A et al (2004) Genotoxic effects of asbestos in humans. Mutat Res 553(1–2):91–102

    Article  CAS  PubMed  Google Scholar 

  25. Dusinska M, Barancokova M, Kazimirova A et al (2004) Does occupational exposure to mineral fibres cause DNA or chromosome damage? Mutat Res 553(1–2):103–110

    Article  CAS  PubMed  Google Scholar 

  26. Vodicka P, Koskinen M, Stetina R et al (2003) The role of various biomarkers in the evaluation of styrene genotoxicity. Cancer Detect Prev 27(4):275–284

    Article  CAS  PubMed  Google Scholar 

  27. Hanova M, Vodickova L, Vaclavikova R et al (2011) DNA damage, DNA repair rates and mRNA expression levels of cell cycle genes (TP53, p21(CDKN1A), BCL2 and BAX) with respect to occupational exposure to styrene. Carcinogenesis 32(1):74–79

    Article  CAS  PubMed  Google Scholar 

  28. Hanova M, Stetina R, Vodickova L et al (2011) Modulation of DNA repair capacity and mRNA expression levels of XRCC1, hOGG1 and XPC genes in styrene-exposed workers. Toxicol Appl Pharmacol 248(3):194–200

    Article  Google Scholar 

  29. Vodicka P, Koskinen M, Naccarati A et al (2006) Styrene metabolism, genotoxicity, and potential carcinogenicity. Drug Metab Rev 38(4):805–853

    Article  CAS  PubMed  Google Scholar 

  30. Slyskova J, Dusinska M, Kuricova M et al (2007) Relationship between the capacity to repair 8-oxoguanine, biomarkers of genotoxicity and individual susceptibility in styrene-exposed workers. Mutat Res 634(1–2):101–111

    Article  CAS  PubMed  Google Scholar 

  31. Vodicka P, Kumar R, Stetina R et al (2004) Markers of individual susceptibility and DNA repair rate in workers exposed to xenobiotics in a tire plant. Environ Mol Mutagen 44(4):283–292

    Article  CAS  PubMed  Google Scholar 

  32. Sliwinski T, Czechowska A, Szemraj J et al (2008) STI571 reduces NER activity in BCR/ABL-expressing cells. Mutat Res 654(2):162–167

    Article  CAS  PubMed  Google Scholar 

  33. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411(6835):366–374

    Article  CAS  PubMed  Google Scholar 

  34. Slyskova J, Naccarati A, Pardini B et al (2012) Differences in nucleotide excision repair capacity between newly diagnosed colorectal cancer patients and healthy controls. Mutagenesis 27(2):225–232

    Article  CAS  PubMed  Google Scholar 

  35. Herrera M, Dominguez G, Garcia JM et al (2009) Differences in repair of DNA cross-links between lymphocytes and epithelial tumor cells from colon cancer patients measured in vitro with the comet assay. Clin Cancer Res 15(17):5466–5472

    Article  CAS  PubMed  Google Scholar 

  36. Collins A, Anderson D, Coskun E et al (2012) Launch of the ComNet (comet network) project on the comet assay in human population studies during the International Comet Assay Workshop meeting in Kusadasi, Turkey (September 13–16, 2011). Mutagenesis 27(4):2

    Article  Google Scholar 

Download references

Acknowledgments

Ro 19-8022 was kindly provided by Hoffman la Roche. SL was supported by a postdoctoral grant from the AXA Research Fund. AA thanks the Ministerio de Educación y Ciencia (“Juan de la Cierva” programme, 2009) of the Spanish Government for personal support. IG thanks the Portuguese Science and Technology Foundation (FCT) under the Project PEst-OE/AGR/UI0772/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Slyskova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Slyskova, J., Langie, S.A.S., Gaivão, I., Collins, A.R., Azqueta, A. (2014). A Standardized Protocol for the In Vitro Comet-Based DNA Repair Assay. In: Sierra, L., Gaivão, I. (eds) Genotoxicity and DNA Repair. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1068-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1068-7_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1067-0

  • Online ISBN: 978-1-4939-1068-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics