Skip to main content

The Comet Assay in Drosophila: Neuroblast and Hemocyte Cells

  • Protocol
  • First Online:
Genotoxicity and DNA Repair

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

At present, the comet assay has been applied to Drosophila melanogaster for the in vivo analysis of genotoxicity, using three different larvae cells: hemocyte, midgut, and neuroblast cells. Due to the advantages of this higher eukaryotic organism, in terms of its similarities to mammals in DNA damage response, the comet assay in Drosophila has been successfully used in several studies to analyze the in vivo genotoxicity of chemicals, including chemotherapeutic drugs, environmental contaminants, and metals. The obtained results clearly confirm the usefulness of this combination (Drosophila and comet assay), and open its possibilities for a more widely use, selecting new cell targets and exposure scenarios.

In this context, we present here detailed protocols to perform this assay using neuroblast and hemocyte cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Östling O, Johanson KJ (1984) Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123:291–298

    Article  PubMed  Google Scholar 

  2. Singh NP, McCoy MT, Tice RR et al (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  PubMed  Google Scholar 

  3. Speit G, Hartmann A (1999) The comet assay (single cell gel test). A sensitive genotoxicity test for the detection of DNA damage and repair. In: Henderson DS (ed) Methods in molecular biology. DNA repair protocols: eukaryotic systems, vol 113. Humana Press, Totowa, pp 203–212

    Chapter  Google Scholar 

  4. Tice RR, Agurell E, Anderson D et al (2000) The single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  CAS  PubMed  Google Scholar 

  5. Hartmann A, Agurell E, Beevers C et al (2003) Recommendations for conducting the in vivo alkaline comet assay. Mutagenesis 18:45–51

    Article  CAS  PubMed  Google Scholar 

  6. Collins AR (2004) The Comet assay for DNA damage and repair. Principles, applications, and limitations. Mol Biotechnol 26:249–261

    Article  CAS  PubMed  Google Scholar 

  7. Collins AR, Gedik CM, Olmedilla B et al (1998) Oxidative DNA damage measured in human lymphocytes; large differences between sexes and between countries, and correlations with heart disease mortality rates. FASEB J 12:1397–1400

    CAS  PubMed  Google Scholar 

  8. Somorovská M, Szabová E, Vodicka P et al (1999) Biomonitoring of genotoxic risk in workers in a rubber factory: comparison of the Comet assay with cytogenetic methods and immunology. Mutat Res 445:181–192

    Article  PubMed  Google Scholar 

  9. Kassie F, Parzefall W, Knasmüller S (2000) Single cell gel electrophoresis assay: a new technique for human biomonitoring studies. Mutat Res 463:13–31

    Article  CAS  PubMed  Google Scholar 

  10. Møller P, Knudsen LE, Loft S et al (2000) The Comet Assay as a rapid test in biomonitoring occupational exposure to DNA-damaging agents and effect of confounding factors. Cancer Epidemiol Biomarkers 9:1005–1015

    Google Scholar 

  11. Faust F, Kassie F, Knasmüller S et al (2004) The use of the alkaline comet assay with lymphocytes in human biomonitoring studies. Mutat Res 566:209–229

    Article  CAS  PubMed  Google Scholar 

  12. Hoffmann H, Högel J, Speit G (2005) The effect of smoking on DNA effects in the comet assay: a meta-analysis. Mutagenesis 20:455–466

    Article  CAS  PubMed  Google Scholar 

  13. Burlinson B, Tice RR, Speit G et al (2007) In vivo Comet Assay workgroup, part of the Fourth International Workgroup on Genotoxicity Testing: results of the in vivo Comet Assay workgroup. Mutat Res 627:31–35

    Article  CAS  PubMed  Google Scholar 

  14. Dušinská M, Collins AR (2008) The comet assay in human biomonitoring: gene-environment interactions. Mutagenesis 23:191–205

    Article  PubMed  Google Scholar 

  15. Uriol E, Sierra M, Comendador MA et al (2013) Long-term biomonitoring of breast cancer patients under adjuvant chemotherapy: the Comet assay as a possible predictive factor. Mutagenesis 28:39–48

    Article  CAS  PubMed  Google Scholar 

  16. Collins AR, Horváthová E (2001) Oxidative DNA damage, antioxidants and DNA repair: applications of the comet assay. Biochem Soc Trans 29:337–341

    Article  CAS  PubMed  Google Scholar 

  17. Collins AR, Dusinska M, Horvathova E et al (2001) Inter-individual differences in DNA base excision repair activity measured in vitro with the comet assay. Mutagenesis 16:297–301

    Article  CAS  PubMed  Google Scholar 

  18. Collins AR, Gaivão I (2007) DNA base excision repair as a biomarker in molecular epidemiology studies. Mol Aspects Med 28:307–322

    Article  CAS  PubMed  Google Scholar 

  19. Gaivão I, Piasek A, Brevik A et al (2009) Comet assay-based methods for measuring DNA repair in vitro; estimates of inter- and intra-individual variation. Cell Biol Toxicol 25:45–52

    Article  PubMed  Google Scholar 

  20. Dušinská M, Collins AR (2010) DNA oxidation, antioxidant effects, and DNA repair measured with the comet assay. In: Aldini G, Yeum KJ, Niki E, Russell R (eds) Biomarkers for antioxidant defense and oxidative damage: principles and practical applications. Blackwell Publishing Ltd., Oxford, pp 261–282

    Chapter  Google Scholar 

  21. Navarrete MH, Carrera P, de Miguel M et al (1997) A fast comet assay variant for solid tissue cells. The assessment of DNA damage in higher plants. Mutat Res 389:271–277

    Article  PubMed  Google Scholar 

  22. Menke M, I-Peng Chen I-P, Angelis KJ et al (2001) DNA damage and repair in Arabidopsis thaliana as measured by the comet assay after treatment with different classes of genotoxins. Mutat Res 493:87–93

    Article  CAS  PubMed  Google Scholar 

  23. Lee RF, Steinert S (2003) Use of the single cell gel electrophoresis/comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. Mutat Res 544:43–64

    Article  CAS  PubMed  Google Scholar 

  24. Dhawan A, Bajpayee M, Parmar D (2009) Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biol Toxicol 25:5–32

    Article  CAS  PubMed  Google Scholar 

  25. Verschaeve L, Gilles J (1995) Single-cell gel electrophoresis assay in the earthworm for the detection of genotoxic compounds in soils. Bull Env Contam Toxicol 54:112–119

    Article  CAS  Google Scholar 

  26. Cotelle S, Férard JF (1999) Comet Assay in genetic ecotoxicology: a review. Environ Mol Mutagen 34:246–255

    Article  CAS  PubMed  Google Scholar 

  27. Dixon DR, Pruski AM, Dixon LRJ et al (2002) Marine invertebrate eco-genotoxicology: a methodological overview. Mutagenesis 17:495–507

    Article  CAS  PubMed  Google Scholar 

  28. Jha AN (2008) Ecotoxicological applications and significance of the comet assay. Mutagenesis 23:207–221

    Article  CAS  PubMed  Google Scholar 

  29. Bilbao C, Ferreiro JA, Comendador MA et al (2002) Influence of mus201 and mus308 mutations of Drosophila melanogaster on the genotoxicity of model chemicals in somatic cells in vivo measured with the comet assay. Mutat Res 503:11–19

    Article  CAS  PubMed  Google Scholar 

  30. Hallström I, Blank A, Atuma S (1984) Genetic variation in cytochrome P450 and xenobiotic metabolism in Drosophila melanogaster. Biochem Pharmacol 33:13–20

    Article  PubMed  Google Scholar 

  31. Søndergaard L (1993) Homology between the mammalian liver and the Drosophila fat body. Trends Genet 9:193

    Article  PubMed  Google Scholar 

  32. Henderson DS (1999) DNA repair defects and other (mus)takes in Drosophila melanogaster. Methods 18:377–400

    Article  CAS  PubMed  Google Scholar 

  33. Sekelsky JJ, Brodsky MH, Burtis KC (2000) DNA repair in Drosophila: insights from the Drosophila genome sequence. J Cell Biol 150:F31–F36

    Article  CAS  PubMed  Google Scholar 

  34. Müller HJ (1927) Artificial transmutation of the gene. Science 143:581–583

    Google Scholar 

  35. Auerbach C, Robson JM (1942) Experiments on the action of mustard gas in Drosophila. Production of sterility and mutation. Report to Ministry of Supply, w. 3979

    Google Scholar 

  36. Mukhopadhyay I, Chowdhuri DK, Bajpayee M et al (2004) Evaluation of in vivo genotoxicity of cypermethrin in Drosophila melanogaster using the alkaline Comet assay. Mutagenesis 19:85–90

    Article  CAS  PubMed  Google Scholar 

  37. Siddique HR, Chowdhuri DK, Saxena DK et al (2005) Validation of Drosophila melanogaster as an in vivo model for genotoxicity assessment using modified alkaline Comet assay. Mutagenesis 20:285–290

    Article  CAS  PubMed  Google Scholar 

  38. Siddique HR, Gupta SC, Dhawan A et al (2005) Genotoxicity of industrial solid waste leachates in Drosophila melanogaster. Environ Mol Mutagen 46:189–197

    Article  CAS  PubMed  Google Scholar 

  39. Siddique HR, Sharma A, Gupta SC et al (2008) DNA damage induced by industrial solid waste leachates in Drosophila melanogaster: a mechanistic approach. Environ Mol Mutagen 49:206–216

    Article  CAS  PubMed  Google Scholar 

  40. Mishra M, Sharma A, Negi MP et al (2011) Tracing the tracks of genotoxicity by trivalent and hexavalent chromium in Drosophila melanogaster. Mutat Res 722:44–51

    Article  CAS  PubMed  Google Scholar 

  41. Sharma A, Mishra M, Shukla AK et al (2012) Organochlorine pesticide, endosulfan induced cellular and organismal response in Drosophila melanogaster. J Hazard Mater 221–222:275–287

    Article  PubMed  Google Scholar 

  42. Mishra M, Sharma A, Shukla AK et al (2013) Transcriptomic analysis provides insights on hexavalent chromium induced DNA strand breaks and their possible repair in midgut cells of Drosophila melanogaster larvae. Mutat Res 747–748:28–39

    Article  PubMed  Google Scholar 

  43. Shukla AK, Pragya P, Chowdhuri DK (2011) A modified alkaline Comet assay for in vivo detection of oxidative DNA damage in Drosophila melanogaster. Mutat Res 726:222–226

    Article  CAS  PubMed  Google Scholar 

  44. Siddique YH, Fatima A, Jyoti S et al (2013) Evaluation of the toxic potential of Graphene copper nanocomposite (GCNC) in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg(9.). PLoS One 8:e80944. doi:10.1371/journal.pone.0080944

    Article  PubMed Central  PubMed  Google Scholar 

  45. Guanggang X, Diqiu L, Jianzhong Y et al (2013) Carbamate insecticide methomyl confers cytotoxicity through DNA damage induction. Food Chem Toxicol 53:352–358

    Article  PubMed  Google Scholar 

  46. Radyuk SN, Michalak K, Rebrin I et al (2006) Effects of ectopic expression of Drosophila DNA glycosylases dOgg1 and RpS3 in mitochondria. Free Radic Biol Med 41:757–764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Brennan LJ, Haukedal JA, Earle JC et al (2012) Disruption of redox homeostasis leads to oxidative DNA damage in spermatocytes of Wolbachia-infected Drosophila simulans. Insect Mol Biol 21:510–520

    Article  CAS  PubMed  Google Scholar 

  48. Carmona ER, Guecheva TN, Creus A et al (2011) Proposal of an in vivo comet assay using haemocytes of Drosophila melanogaster. Environ Mol Mutagen 52:165–169

    Article  CAS  PubMed  Google Scholar 

  49. Carmona ER, Creus A, Marcos R (2011) Genotoxic effects of two nickel-compounds in somatic cells of Drosophila melanogaster. Mutat Res 718:33–37

    Article  CAS  PubMed  Google Scholar 

  50. Carmona ER, Creus A, Marcos R (2011) Genotoxicity testing of two lead-compounds in somatic cells of Drosophila melanogaster. Mutat Res 724:35–40

    Article  CAS  PubMed  Google Scholar 

  51. Sabella S, Brunetti V, Vecchio G et al (2011) Toxicity of citrate-capped AuNPs: an in vitro and in vivo assessment. J Nanoparticle Res 13:6821–6835

    Article  CAS  Google Scholar 

  52. Demir E (2012) In vivo genotoxicity assessment of diflubenzuron and spinosad in Drosophila melanogaster with the comet assay using haemocytes and the SMART assay. Fresenius Environ Bullet 21:3894–3900

    CAS  Google Scholar 

  53. Demir E, Kaya B (2013) Studies on the genotoxic properties of four benzyl derivatives in the in vivo comet assay using haemocytes of Drosophila melanogaster. Fresenius Environ Bullet 22:1590–1596

    CAS  Google Scholar 

  54. García Sar D, Aguado L, Montes Bayón M et al (2012) Relationships between cisplatin-induced adducts and DNA strand-breaks, mutation and recombination in vivo in somatic cells of Drosophila melanogaster, under different conditions of nucleotide excision repair. Mutat Res 741:81–88

    Article  PubMed  Google Scholar 

  55. Marcos R, Carmona ER (2013) The wing-spot and the comet tests as useful assays detecting genotoxicity in Drosophila. Methods Mol Biol 1044:417–427

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support of MEC Spain (project CT2004-03005) and FICYT (PCTI Asturias, project PC07-018) to LMS and CIRIT (project 2009SGR-725) to RM. ERC thanks the support of Dirección General de Investigación y Postgrado, UC Temuco, DGIP UCT CD 2010-01 project, and MECESUP UCT 0804 project. LA thanks the support of Instituto Universitario de Oncología del Principado de Asturias, Obra Social Cajastur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. María Sierra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sierra, L.M., Carmona, E.R., Aguado, L., Marcos, R. (2014). The Comet Assay in Drosophila: Neuroblast and Hemocyte Cells. In: Sierra, L., Gaivão, I. (eds) Genotoxicity and DNA Repair. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1068-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1068-7_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1067-0

  • Online ISBN: 978-1-4939-1068-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics