Skip to main content

The Comet Assay: High Throughput Use of FPG

  • Protocol
  • First Online:
Genotoxicity and DNA Repair

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

The alkaline comet assay in its standard form is well established as a genotoxicity testing assay, widely used in screening novel chemicals and pharmaceuticals for potentially carcinogenic effects. Incorporation of a digestion of DNA with lesion-specific enzymes is an accepted modification which has allowed, for example, the quantitative assessment of levels of 8-oxoguanine in DNA as a measure of oxidative damage, using the enzyme formamidopyrimidine DNA glycosylase (FPG). However, FPG is not restricted to the measurement of oxidized bases, and we describe here its use in a wider context to detect various kinds of DNA damage.

A limitation of the standard assay is the relatively low number of samples that can be run in one experiment (restricted by the number of microscope slides fitting in the electrophoresis tank). Recent developments of high throughput versions of the comet assay have alleviated this problem, and we describe a modification based on the use of 12 minigels on each slide.

We provide a detailed protocol for running 12 minigels per slide, with the inclusion of FPG to obtain enhanced sensitivity. We emphasize the conditions of the comet assay that are most critical for reproducibility and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cortés-Gutiérrez EI, Dávila-Rodríguez MI, Fernández JL et al (2011) New application of the comet assay: chromosome—comet assay. J Histochem Cytochem 59:655–660

    Article  PubMed Central  PubMed  Google Scholar 

  2. Collins AR, Azqueta-Oscoz A, Brunborg G et al (2008) The comet assay: topical issues. Mutagenesis 23:143–151

    Article  CAS  PubMed  Google Scholar 

  3. Ahnström G, Erixon K (1981) Measurement of strand breaks by alkaline denaturation and hydroxyapatite chromatography. In: Friedberg EC, Hanawalt PC (eds) DNA repair. A laboratory manual of research procedures. Marcel Dekker, New York

    Google Scholar 

  4. Singh NP, McCoy MT, Tice RR et al (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  PubMed  Google Scholar 

  5. Cook PR, Brazell IA, Jost E (1976) Characterization of nuclear structures containing superhelical DNA. J Cell Sci 22:303–324

    CAS  PubMed  Google Scholar 

  6. Rydberg B, Johanson KJ (1978) Estimation of single strand breaks in single mammalian cells. In: Hanawalt PC, Friedberg EC, Fox CF (eds) DNA repair mechanisms. Academic, New York

    Google Scholar 

  7. Östling O, Johanson KJ (1987) Bleomycin, in contrast to gamma irradiation, induces extreme variation of DNA strand breakage from cell to cell. Int J Radiat Biol 52:683–691

    Article  Google Scholar 

  8. Olive PL, Banath JP, Durand RE (1990) Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the “comet” assay. Radiat Res 122:86–94

    Article  CAS  PubMed  Google Scholar 

  9. Olive PL, Wlodek D, Banath JP (1991) DNA double-strand breaks measured in individual cells subjected to gel electrophoresis. Cancer Res 51:4671–4676

    CAS  PubMed  Google Scholar 

  10. Collins AR, Duthie SJ, Dobson VL (1993) Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis 14:1733–1735

    Article  CAS  PubMed  Google Scholar 

  11. Dusinska M, Collins AR (1996) Detection of oxidised purines and UV-induced photoproducts in DNA of single cells, by inclusion of lesion-specific enzymes in the comet assay. Altern Lab Anim 24:405–411

    Google Scholar 

  12. Li Q, Laval J, Ludlum DB (1997) FPG protein releases a ring-opened N-7 guanine adduct from DNA that has been modified by sulfur mustard. Carcinogenesis 18:1035–1038

    Article  CAS  PubMed  Google Scholar 

  13. Speit G, Schütz P, Bonzheim I et al (2004) Sensitivity of the FPG protein towards alkylation damage in the comet assay. Toxicol Lett 146:151–158

    Article  CAS  PubMed  Google Scholar 

  14. Collins AR, Mitchell DL, Zunino A et al (1997) UV-sensitive rodent mutant cell lines of complementation groups 6 and 8 differ phenotypically from their human counterparts. Environ Mol Mutagen 29:152–160

    Article  CAS  PubMed  Google Scholar 

  15. Collins AR, Dusinska M, Horska A (2001) Detection of alkylation damage in human lymphocyte DNA with the comet assay. Acta Biochim Pol 48:611–614

    CAS  PubMed  Google Scholar 

  16. Duthie SJ, McMillan P (1997) Uracil misincorporation in human DNA detected using single cell gel electrophoresis. Carcinogenesis 18:1709–1714

    Article  CAS  PubMed  Google Scholar 

  17. Smith CC, O’Donovan MR, Martin EA (2006) hOGG1 recognizes oxidative damage using the comet assay with greater specificity than FPG or ENDOIII. Mutagenesis 21:185–190

    Article  CAS  PubMed  Google Scholar 

  18. Spanswick V, Hartley J, Hartley J (2010) Measurement of DNA interstrand crosslinking in individual cells using the single cell gel electrophoresis (comet) assay. In: Fox KR (ed) Drug-DNA interaction protocols, methods in molecular biology, vol 613. Humana, New York, pp 267–282

    Chapter  Google Scholar 

  19. Collins AR, Dobson VL, Dusinská M et al (1997) The comet assay: what can it really tell us? Mutat Res 375:183–193

    Article  CAS  PubMed  Google Scholar 

  20. Wasson GR, McGlynn AP, McNulty H et al (2006) Global DNA and p53 region-specific hypomethylation in human colonic cells is induced by folate depletion and reversed by folate supplementation. J Nutr 136:2748–2753

    CAS  PubMed  Google Scholar 

  21. Wentzel JF, Gouws C, Huysamen C et al (2010) Assessing the DNA methylation status of single cells with the comet assay. Anal Biochem 400:190–194

    Article  CAS  PubMed  Google Scholar 

  22. Uhl M, Helma C, Knasmüller S (1999) Single-cell gel electrophoresis assays with human-derived hepatoma (Hep G2) cells. Mutat Res 441:215–224

    Article  CAS  PubMed  Google Scholar 

  23. Hartmann A, Agurell E, Beevers C et al (2003) Recommendations for conducting the in vivo alkaline Comet assay. Mutagenesis 18:45–51

    Article  CAS  PubMed  Google Scholar 

  24. Kirkland D, Speit G (2008) Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens: III. Appropriate follow-up testing in vivo. Mutat Res 654:114–132

    Article  CAS  PubMed  Google Scholar 

  25. ICH harmonised tripartite guideline S2 (R1) (2011) Guidance on genotoxicity testing and data interpretation for pharmaceuticals intended for human use. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. http://www.ich.org/products/guidelines/safety/article/safety-guidelines.html

  26. EFSA Scientific Committee (2011) Scientific opinion on genotoxicity testing strategies applicable to food and feed safety assessment. EFSA J 9:2379

    Google Scholar 

  27. Organisation for Economic Cooperation & Development (OECD) (2013) Draft OECD guideline in vivo mammalian alkaline comet assay. In: OECD guidelines for testing of chemicals.

    Google Scholar 

  28. EFSA Panel on Dietetic Products, Nutrition and Allergies (2011) Guidance on the scientific requirements for health claims related to antioxidants, oxidative damage and cardiovascular health. EFSA J 9:2474

    Google Scholar 

  29. Azqueta A, Arbillaga L, Lopez de Cerain A et al (2013) Enhancing the sensitivity of the comet assay as a genotoxicity test, by combining it with bacterial repair enzyme FPG. Mutagenesis 28:271–277

    Article  CAS  PubMed  Google Scholar 

  30. McNamee JP, McLean JRN, Ferrarotto CL et al (2000) Comet assay: rapid processing of multiple samples. Mutat Res 466:63–69

    Article  CAS  PubMed  Google Scholar 

  31. Gutzkow KB, Langleite TM, Meier S et al (2013) High-throughput comet assay using 96 minigels. Mutagenesis 28:333–340

    Article  CAS  PubMed  Google Scholar 

  32. Stang A, Witte I (2009) Performance of the comet assay in a high-throughput version. Mutat Res 675:5–10

    Article  CAS  PubMed  Google Scholar 

  33. Stang A, Witte I (2010) The ability of the high-throughput comet assay to measure the sensitivity of five cell lines toward methyl methanesulfonate, hydrogen peroxide, and pentachlorophenol. Mutat Res 701:103–106

    Article  CAS  PubMed  Google Scholar 

  34. Mercey E, Obeïd P, Glaise D et al (2010) The application of 3D micropatterning of agarose substrate for cell culture and in situ comet assays. Biomaterials 31:3156–3165

    Article  CAS  PubMed  Google Scholar 

  35. Wood DK, Weingeist DM, Bhatia SN et al (2010) Single cell trapping and DNA damage analysis using microwell arrays. Proc Natl Acad Sci U S A 107:10008–10013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Weingeist DM, Ge J, Wood DK et al (2013) Single-cell microarray enables high-throughput evaluation of DNA double-strand breaks and DNA repair inhibitors. Cell Cycle 12:907–915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Ritter D, Knebel J (2009) Genotoxicity testing in vitro—development of a higher throughput analysis method based on the comet assay. Toxicol In Vitro 23:1570–1575

    Article  CAS  PubMed  Google Scholar 

  38. Shaposhnikov S, Azqueta A, Henriksson S et al (2010) Twelve-gel slide format optimised for comet assay and fluorescent in situ hybridisation. Toxicol Lett 195:31–34

    Article  CAS  PubMed  Google Scholar 

  39. Zhang LJ, Jia JF, Hao JG et al (2011) A modified protocol for the comet assay allowing the processing of multiple samples. Mutat Res 721:153–156

    Article  CAS  PubMed  Google Scholar 

  40. Azqueta A, Gutzkow KB, Priestley CC et al (2013) A comparative performance test of standard, medium- and high-throughput comet assays. Toxicol In Vitro 27:768–773

    Article  CAS  PubMed  Google Scholar 

  41. Stang A, Brendamour M, Schunck C et al (2010) Automated analysis of DNA damage in the high-throughput version of the comet assay. Mutat Res 698:1–5

    Article  CAS  PubMed  Google Scholar 

  42. Azqueta A, Meier S, Priestley C et al (2011) The influence of scoring method on variability in results obtained with the comet assay. Mutagenesis 26:393–399

    Article  CAS  PubMed  Google Scholar 

  43. Kirkland D (2011) Improvements in the reliability of in vitro genotoxicity testing. Expert Opin Drug Metab Toxicol 7:1513–1520

    Article  CAS  PubMed  Google Scholar 

  44. Tice RR, Agurell E, Anderson D et al (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  CAS  PubMed  Google Scholar 

  45. Burlinson B (2012) The in vitro and in vivo comet assays. In: Parry JM, Parry EM (eds) Genetic toxicology: principles and methods. Springer, New York

    Google Scholar 

  46. Gedik CM, Collins A, European Standards Committee on Oxidative DNA Damage ESCODD (2005) Establishing the background level of base oxidation in human lymphocyte DNA: results of an interlaboratory validation study. FASEB J 19:82–84

    CAS  PubMed  Google Scholar 

  47. Lorenzo Y, Costa S, Collins AR et al (2013) The comet assay, DNA damage, DNA repair and cytotoxicity: hedgehogs are not always dead. Mutagenesis 28:427–432

    Article  CAS  PubMed  Google Scholar 

  48. Lovell DP, Omori T (2008) Statistical issues in the use of the comet assay. Mutagenesis 23:171–182

    Article  CAS  PubMed  Google Scholar 

  49. Lovell DP (2009) Statistical analysis of comet assay data. In: Anderson D, Dhawan A (eds) The comet assay in toxicology. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  50. Ersson C, Möller L (2011) The effects on DNA migration of altering parameters in the comet assay protocol such as agarose density, electrophoresis conditions and durations of the enzyme or the alkaline treatments. Mutagenesis 26:689–695

    Article  CAS  PubMed  Google Scholar 

  51. Azqueta A, Gutzkow KB, Brunborg G et al (2011) Towards a more reliable comet assay; optimising agarose concentration, unwinding time and electrophoresis conditions. Mutat Res 724:41–45

    Article  CAS  PubMed  Google Scholar 

  52. Banáth JP, Kim A, Olive PL (2001) Overnight lysis improves the efficiency of detection of DNA damage in the alkaline comet assay. Radiat Res 155:564–571

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaya Azqueta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Azqueta, A., Collins, A.R. (2014). The Comet Assay: High Throughput Use of FPG. In: Sierra, L., Gaivão, I. (eds) Genotoxicity and DNA Repair. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1068-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1068-7_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1067-0

  • Online ISBN: 978-1-4939-1068-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics