Skip to main content

In Situ Hybridization Detection of miRNA Using LNA™ Oligonucleotides

  • Protocol
  • First Online:
RNA Mapping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1182))

Abstract

MicroRNAs are a family of small noncoding ribonucleic acids involved in regulation of gene activity. They have been implicated in both normal cellular pathways related to proliferation, differentiation, and apoptosis and pathological processes leading to disease. It is believed that better understanding of their structure and function will shed more light on a number of cellular functions while at the same time providing the basis for development of novel therapeutic applications. That is why identification and quantification of miRNAs are of great scientific interest. Several techniques have been developed which allow accurate, fast, and easy detection of these RNA species. This chapter focuses on in situ hybridization (ISH), a method which combines identification of miRNAs with histochemistry (ICH). We describe in detail a protocol for ISH in formalin-fixed paraffin-embedded tissue with the help of synthetic nonradioactive LNA oligonucleotide probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambros V (2011) MicroRNAs and developmental timing. Curr Opin Genet Dev 21(4):511–517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Hoffmann TW, Duverlie G, Bengrine A (2012) MicroRNAs and hepatitis C virus: toward the end of miR-122 supremacy. Virol J 9:109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Suh N, Blelloch R (2011) Small RNAs in early mammalian development: from gametes to gastrulation. Development 138(9):1653–1661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Volinia S, Galasso M, Costinean S, Tagliavini L, Gamberoni G, Drusco A et al (2010) Reprogramming of miRNA networks in cancer and leukemia. Genome Res 20(5):589–599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Nana-Sinkam SP, Croce CM (2013) Clinical applications for microRNAs in cancer. Clin Pharmacol Ther 93(1):98–104

    Article  CAS  PubMed  Google Scholar 

  6. Li J, Li X, Li Y, Yang H, Wang L, Qin Y et al (2013) Cell-specific detection of miR-375 downregulation for predicting the prognosis of esophageal squamous cell carcinoma by miRNA in situ hybridization. PLoS One 8(1):e53582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Nelson PT, Abner EL, Scheff SW, Schmitt FA, Kryscio RJ, Jicha GA et al (2009) Alzheimer’s-type neuropathology in the precuneus is not increased relative to other areas of neocortex across a range of cognitive impairment. Neurosci Lett 450(3):336–339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Broide RS, Trembleau A, Ellison JA, Cooper J, Lo D, Young WG et al (2004) Standardized quantitative in situ hybridization using radioactive oligonucleotide probes for detecting relative levels of mRNA transcripts verified by real-time PCR. Brain Res 1000(1–2):211–222

    Article  CAS  PubMed  Google Scholar 

  9. Kaur H, Arora A, Wengel J, Maiti S (2006) Thermodynamic, counterion, and hydration effects for the incorporation of locked nucleic acid nucleotides into DNA duplexes. Biochemistry 45(23):7347–7355

    Article  CAS  PubMed  Google Scholar 

  10. Owczarzy R, You Y, Groth CL, Tataurov AV (2011) Stability and mismatch discrimination of locked nucleic acid-DNA duplexes. Biochemistry 50(43):9352–9367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Vester B, Wengel J (2004) LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry 43(42):13233–13241

    Article  CAS  PubMed  Google Scholar 

  12. Kloosterman WP, Wienholds E, de Bruijn E, Kauppinen S, Plasterk RH (2006) In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods 3(1):27–29

    Article  CAS  PubMed  Google Scholar 

  13. Wheeler G, Valoczi A, Havelda Z, Dalmay T (2007) In situ detection of animal and plant microRNAs. DNA Cell Biol 26(4):251–255

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Cotta Doné Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Doné, S.C., Beltcheva, O. (2014). In Situ Hybridization Detection of miRNA Using LNA™ Oligonucleotides. In: Alvarez, M., Nourbakhsh, M. (eds) RNA Mapping. Methods in Molecular Biology, vol 1182. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1062-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1062-5_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1061-8

  • Online ISBN: 978-1-4939-1062-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics