Skip to main content

A Guide for miRNA Target Prediction and Analysis Using Web-Based Applications

  • Protocol
  • First Online:
RNA Mapping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1182))

Abstract

MiRNAs are small noncoding RNAs which act by binding to the 3′UTR of mRNA transcripts to exert a negative regulatory effect. The miRNA binding to its target follows rules based on the base complementarity of the seed sequence (2–9 first nucleotides of the miRNA sequence). Several algorithms have been developed to predict miRNA binding to genomic targets and its physiological consequences. This chapter will describe several practical aspects for the use of miRNA target prediction algorithms taking advantage of their web interfaces as well as how to produce integrative results in a graphical manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol. doi:10.1038/nrm3611

    PubMed  Google Scholar 

  2. Holcik M, Pestova TV (2007) Translation mechanism and regulation: old players, new concepts. Meeting on translational control and non-coding RNA. EMBO Rep 8:639–643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Elkayam E, Kuhn CD, Tocilj A et al (2012) The structure of human argonaute-2 in complex with miR-20a. Cell 150:100–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Turchinovich A, Burwinkel B (2012) Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma. RNA Biol 9:1066–1075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Brennecke J, Stark A, Russell RB et al (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85

    Article  PubMed Central  PubMed  Google Scholar 

  6. Brodersen P, Voinnet O (2009) Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol 10: 141–148

    Article  CAS  PubMed  Google Scholar 

  7. Smalheiser NR, Torvik VI (2006) Complications in mammalian microRNA target prediction. Methods Mol Biol 342:115–127

    CAS  PubMed  Google Scholar 

  8. Zhang Y, Verbeek FJ (2010) Comparison and integration of target prediction algorithms for microRNA studies. J Integr Bioinform 7. doi:10.2390/biecoll-jib-2010-127

  9. Thomas M, Lieberman J, Lal A (2010) Desperately seeking microRNA targets. Nat Struct Mol Biol 17:1169–1174

    Article  CAS  PubMed  Google Scholar 

  10. Friedman RC, Farh KK, Burge CB et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Krek A, Grun D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  CAS  PubMed  Google Scholar 

  12. Betel D, Wilson M, Gabow A et al (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36:D149–153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kertesz M, Iovino N, Unnerstall U et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284

    Article  CAS  PubMed  Google Scholar 

  14. Maragkakis M, Vergoulis T, Alexiou P et al (2011) DIANA-microT Web server upgrade supports Fly and Worm miRNA target prediction and bibliographic miRNA to disease association. Nucleic Acids Res 39:W145–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Maragkakis M, Reczko M, Simossis VA et al (2009) DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 37:W273–276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Chandra V, Girijadevi R, Nair AS et al (2010) MTar: a computational microRNA target prediction architecture for human transcriptome. BMC Bioinformatics 11(Suppl 1):S2

    Article  PubMed Central  PubMed  Google Scholar 

  17. Reczko M, Maragkakis M, Alexiou P et al (2011) Accurate microRNA target prediction using detailed binding site accessibility and machine learning on proteomics data. Front Genet 2:103

    PubMed Central  PubMed  Google Scholar 

  18. Vejnar CE, Blum M, Zdobnov EM (2013) miRmap web: comprehensive microRNA target prediction online. Nucleic Acids Res 41: W165–W168

    Article  PubMed Central  PubMed  Google Scholar 

  19. Vejnar CE, Zdobnov EM (2012) MiRmap: comprehensive prediction of microRNA target repression strength. Nucleic Acids Res 40: 11673–11683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Park K, Kim KB (2013) miRTar Hunter: a prediction system for identifying human microRNA target sites. Mol Cells 35: 195–201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Helwak A, Kudla G, Dudnakova T et al (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ritchie W, Flamant S, Rasko JE (2009) Predicting microRNA targets and functions: traps for the unwary. Nat Methods 6:397–398

    Article  CAS  PubMed  Google Scholar 

  23. Dweep H, Sticht C, Pandey P et al (2011) miRWalk–database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 44:839–847

    Article  CAS  PubMed  Google Scholar 

  24. Xiao F, Zuo Z, Cai G et al (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37:D105–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Shirdel EA, Xie W, Mak TW et al (2011) NAViGaTing the micronome–using multiple microRNA prediction databases to identify signalling pathway-associated microRNAs. PLoS One 6:e17429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Brown KR, Otasek D, Ali M et al (2009) NAViGaTOR: Network Analysis, Visualization and Graphing Toronto. Bioinformatics 25: 3327–3329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Bueno MJ, Gomez de Cedron M, Gomez-Lopez G et al (2011) Combinatorial effects of microRNAs to suppress the Myc oncogenic pathway. Blood 117:6255–6266

    Article  CAS  PubMed  Google Scholar 

  28. Franceschini A, Szklarczyk D, Frankild S et al (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41: D808–815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39: D152–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Zinovyev A, Viara E, Calzone L et al (2008) BiNoM: a Cytoscape plugin for manipulating and analyzing biological networks. Bioinformatics 24:876–877

    Article  CAS  PubMed  Google Scholar 

  31. Witkos TM, Koscianska E, Krzyzosiak WJ (2011) Practical aspects of microRNA target prediction. Curr Mol Med 11:93–109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

M.C.C. was supported by a postdoctoral fellowship from Fundação para a Ciência e Tecnologia, Portugal (Ref. SFRH/BPD/ 65131/2009). The authors would like to acknowledge Francisco Enguita Jr. for his friendship and excellent technical support in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Enguita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Leitão, A.L., Costa, M.C., Enguita, F.J. (2014). A Guide for miRNA Target Prediction and Analysis Using Web-Based Applications. In: Alvarez, M., Nourbakhsh, M. (eds) RNA Mapping. Methods in Molecular Biology, vol 1182. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1062-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1062-5_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1061-8

  • Online ISBN: 978-1-4939-1062-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics