Localizing and Quantifying Metabolites In Situ with Luminometry: Induced Metabolic Bioluminescence Imaging (imBI)

  • Stefan Walenta
  • Nadine F. Voelxen
  • Ulrike G. A. Sattler
  • Wolfgang Mueller-KlieserEmail author
Part of the Neuromethods book series (NM, volume 90)


The technique of induced metabolic bioluminescence imaging (imBI) has been developed to obtain a “snapshot” of the momentary metabolic status of biological tissues. Using cryo-sections of snap-frozen tissue specimens, imBI combines highly specific and sensitive in situ detection of metabolites with spatial resolution on a microscopic level and with metabolic imaging in relation to tissue histology. Establishing appropriate enzyme mixtures, various metabolites, such as ATP, glucose, lactate, pyruvate, and many others can be biochemically linked to the emission of light by luciferases in a stoichiometrical and calibratable manner. Spatial resolution is achieved with a particular sandwich technique inducing local bioluminescence in the tissue sections. Two-dimensional light intensity profiles can be registered with a high performance microscope and a cooled back-illuminated EM-CCD camera. These profiles, which can be calibrated in micromole of metabolite per gram of tissue (μmol/g; equivalent to mmol/L or mM in solution), are routinely displayed in a color-coded way. In the standard configuration, the minimal detectable metabolite concentration is in the range of 100–200 μM, the maximal linear spatial resolution is 20–25 μm. Serial sectioning and a specifically designed technique for precise overlay allow for signal acquisition in selected histological areas, e.g., distinct zones of organs, such as renal medulla versus renal cortex. The method has been applied by different investigators in various fields of biology and medicine including quantitative metabolic imaging in plant seedlings, 2D or 3D cell cultures, blood vessel walls, tissue wounds, various animal organs, experimental tumors, and cancers in patients. While not used extensively in neuroscience yet, this technology has a great potential to unravel the local distribution of metabolites in the context of brain metabolism. In summary, biologically and clinically relevant and significant results were obtained with imBI most likely due to the “natural way” of detecting metabolites, i.e., using them as substrates of specific enzymes.

Key words

Metabolic imaging Induced metabolic bioluminescence imaging Quantitative imaging Warburg metabolism Lactate 



This work was supported by the Deutsche Forschungsgemein-schaft: Mu 576/15-1, 15-2, and by the German Federal Ministry of Education and Research (“ISIMEP”; 02NUK016A).


  1. 1.
    Espina V, Wulfkuhle J, Liotta LA (2009) Application of laser microdissection and reverse-phase protein microarrays to the molecular profiling of cancer signal pathway networks in the tissue microenvironment. Clin Lab Med 29(1):1–13PubMedCrossRefGoogle Scholar
  2. 2.
    Silasi DA, Alvero AB, Mor J, Chen R, Fu HH, Montagna MK, Mor G (2008) Detection of cancer-related proteins in fresh-frozen ovarian cancer samples using laser capture microdissection. Methods Mol Biol 414:35–45PubMedGoogle Scholar
  3. 3.
    Zanni KL, Chan GK (2011) Laser capture microdissection: understanding the techniques and implications for molecular biology in nursing research through analysis of breast cancer tumor samples. Biol Res Nurs 13(3):297–305PubMedCrossRefGoogle Scholar
  4. 4.
    Teutsch HF, Goellner A, Mueller-Klieser W (1995) Glucose levels and succinate and lactate dehydrogenase activity in EMT6/Ro tumor spheroids. Eur J Cell Biol 66(3):302–307PubMedGoogle Scholar
  5. 5.
    Brahimi-Horn MC, Bellot G, Pouyssegur J (2011) Hypoxia and energetic tumour metabolism. Curr Opin Genet Dev 21(1):67–72PubMedCrossRefGoogle Scholar
  6. 6.
    Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13(6):472–482PubMedCrossRefGoogle Scholar
  7. 7.
    Schumacker PT (2010) A tumor suppressor SIRTainty. Cancer Cell 17(1):5–6PubMedCrossRefGoogle Scholar
  8. 8.
    Bayley JP, Devilee P (2010) Warburg tumours and the mechanisms of mitochondrial tumour suppressor genes. Barking up the right tree? Curr Opin Genet Dev 20(3):324–329PubMedCrossRefGoogle Scholar
  9. 9.
    Bayley JP, Devilee P (2012) The Warburg effect in 2012. Curr Opin Oncol 24(1):62–67PubMedCrossRefGoogle Scholar
  10. 10.
    Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95PubMedCrossRefGoogle Scholar
  11. 11.
    Herling A, Konig M, Bulik S, Holzhutter HG (2011) Enzymatic features of the glucose metabolism in tumor cells. FEBS J 278(14):2436–2459PubMedCrossRefGoogle Scholar
  12. 12.
    Icard P, Poulain L, Lincet H (2012) Understanding the central role of citrate in the metabolism of cancer cells. Biochim Biophys Acta 1825(1):111–116PubMedGoogle Scholar
  13. 13.
    Israel M, Schwartz L (2011) The metabolic advantage of tumor cells. Mol Cancer 10:70PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Rodriguez-Enriquez S, Gallardo-Perez JC, Marin-Hernandez A, Aguilar-Ponce JL, Mandujano-Tinoco EA, Meneses A, Moreno-Sanchez R (2011) Oxidative phosphorylation as a target to arrest malignant neoplasias. Curr Med Chem 18(21):3156–3167PubMedCrossRefGoogle Scholar
  15. 15.
    Hu S, Balakrishnan A, Bok RA, Anderton B, Larson PE, Nelson SJ, Kurhanewicz J, Vigneron DB, Goga A (2011) 13C-pyruvate imaging reveals alterations in glycolysis that precede c-Myc-induced tumor formation and regression. Cell Metab 14(1):131–142PubMedCrossRefGoogle Scholar
  16. 16.
    Schafer ZT, Grassian AR, Song L, Jiang Z, Gerhart-Hines Z, Irie HY, Gao S, Puigserver P, Brugge JS (2009) Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 461(7260):109–113PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Dhup S, Dadhich RK, Porporato PE, Sonveaux P (2012) Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr Pharm Des 18(10):1319–1330PubMedCrossRefGoogle Scholar
  18. 18.
    Hirschhaeuser F, Sattler UG, Mueller-Klieser W (2011) Lactate: a metabolic key player in cancer. Cancer Res 71(22):6921–6925PubMedCrossRefGoogle Scholar
  19. 19.
    Kim JK, Haselgrove JC, Shapiro IM (1993) Measurement of metabolic events in the avian epiphyseal growth cartilage using a bioluminescence technique. J Histochem Cytochem 41(5):693–702PubMedCrossRefGoogle Scholar
  20. 20.
    Kricka LJ (2000) Application of bioluminescence and chemiluminescence in biomedical sciences. Methods Enzymol 305:333–345PubMedCrossRefGoogle Scholar
  21. 21.
    Paschen W, Niebuhr I, Hossmann KA (1981) A bioluminescence method for the demonstration of regional glucose distribution in brain slices. J Neurochem 36(2):513–517PubMedCrossRefGoogle Scholar
  22. 22.
    Paschen W (1985) Regional quantitative determination of lactate in brain sections. A bioluminescent approach. J Cereb Blood Flow Metab 5(4):609–612PubMedCrossRefGoogle Scholar
  23. 23.
    Bohndiek SE, Kettunen MI, Hu DE, Brindle KM (2012) Hyperpolarized (13)C spectroscopy detects early changes in tumor vasculature and metabolism after VEGF neutralization. Cancer Res 72(4):854–864PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Day SE, Kettunen MI, Gallagher FA, Hu DE, Lerche M, Wolber J, Golman K, Ardenkjaer-Larsen JH, Brindle KM (2007) Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med 13(11):1382–1387PubMedCrossRefGoogle Scholar
  25. 25.
    Gallagher FA, Kettunen MI, Hu DE, Jensen PR, Zandt RI, Karlsson M, Gisselsson A, Nelson SK, Witney TH, Bohndiek SE, Hansson G, Peitersen T, Lerche MH, Brindle KM (2009) Production of hyperpolarized [1,4-13C2]malate from [1,4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors. Proc Natl Acad Sci U S A 106(47):19801–19806PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Hu S, Zhu M, Yoshihara HA, Wilson DM, Keshari KR, Shin P, Reed G, von Morze C, Bok R, Larson PE, Kurhanewicz J, Vigneron DB (2011) In vivo measurement of normal rat intracellular pyruvate and lactate levels after injection of hyperpolarized [1-(13)C]alanine. Magn Reson Imaging 29(8):1035–1040PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Kurhanewicz J, Vigneron DB, Brindle K, Chekmenev EY, Comment A, Cunningham CH, Deberardinis RJ, Green GG, Leach MO, Rajan SS, Rizi RR, Ross BD, Warren WS, Malloy CR (2011) Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 13(2):81–97PubMedPubMedCentralGoogle Scholar
  28. 28.
    Reed GD, Larson PE, Morze C, Bok R, Lustig M, Kerr AB, Pauly JM, Kurhanewicz J, Vigneron DB (2012) A method for simultaneous echo planar imaging of hyperpolarized (13)C pyruvate and (13)C lactate. J Magn Reson 217:41–47PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Witney TH, Kettunen MI, Brindle KM (2011) Kinetic modeling of hyperpolarized 13C label exchange between pyruvate and lactate in tumor cells. J Biol Chem 286(28):24572–24580PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Yaromina A, Quennet V, Zips D, Meyer S, Shakirin G, Walenta S, Mueller-Klieser W, Baumann M (2009) Co-localisation of hypoxia and perfusion markers with parameters of glucose metabolism in human squamous cell carcinoma (hSCC) xenografts. Int J Radiat Biol 85(11):972–980PubMedCrossRefGoogle Scholar
  31. 31.
    Walenta S, Schroeder T, Mueller-Klieser W (2002) Metabolic mapping with bioluminescence: basic and clinical relevance. Biomol Eng 18(6):249–262PubMedCrossRefGoogle Scholar
  32. 32.
    Borisjuk L, Walenta S, Rolletschek H, Mueller-Klieser W, Wobus U, Weber H (2002) Spatial analysis of plant metabolism: sucrose imaging within Vicia faba cotyledons reveals specific developmental patterns. Plant J 29(4):521–530PubMedCrossRefGoogle Scholar
  33. 33.
    Levin M, Bjornheden T, Evaldsson M, Walenta S, Wiklund O (1999) A bioluminescence method for the mapping of local ATP concentrations within the arterial wall, with potential to assess the in vivo situation. Arterioscler Thromb Vasc Biol 19(4):950–958PubMedCrossRefGoogle Scholar
  34. 34.
    Leppanen O, Ekstrand M, Brasen JH, Levin M (2012) Bioluminescence imaging of energy depletion in vascular pathology: patent ductus arteriosus and atherosclerosis. J Biophotonics 5(4):336–344PubMedCrossRefGoogle Scholar
  35. 35.
    Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfor K, Rofstad EK, Mueller-Klieser W (2000) High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 60(4):916–921PubMedGoogle Scholar
  36. 36.
    Walenta S, Schroeder T, Mueller-Klieser W (2004) Lactate in solid malignant tumors: potential basis of a metabolic classification in clinical oncology. Curr Med Chem 11(16):2195–2204PubMedCrossRefGoogle Scholar
  37. 37.
    Walenta S, Mueller-Klieser WF (2004) Lactate: mirror and motor of tumor malignancy. Semin Radiat Oncol 14(3):267–274PubMedCrossRefGoogle Scholar
  38. 38.
    Sattler UG, Meyer SS, Quennet V, Hoerner C, Knoerzer H, Fabian C, Yaromina A, Zips D, Walenta S, Baumann M, Mueller-Klieser W (2010) Glycolytic metabolism and tumour response to fractionated irradiation. Radiother Oncol 94(1):102–109PubMedCrossRefGoogle Scholar
  39. 39.
    Wilson T, Hastings JW (1998) Bio-luminescence. Annu Rev Cell Dev Biol 14:197–230PubMedCrossRefGoogle Scholar
  40. 40.
    Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW, Mueller-Klieser W (2001) Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys 51(2):349–353PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Stefan Walenta
    • 1
  • Nadine F. Voelxen
    • 1
  • Ulrike G. A. Sattler
    • 1
  • Wolfgang Mueller-Klieser
    • 1
    Email author
  1. 1.Institute of PathophysiologyUniversity Medical Center, Johannes Gutenberg-University of MainzMainzGermany

Personalised recommendations