RNA Interference as a Tool to Selectively Down-Modulate Protein Function

  • Seila Fernandez-Fernandez
  • Juan P. BolañosEmail author
Part of the Neuromethods book series (NM, volume 90)


RNA interference (RNAi) is a rapid and efficient technique to cause highly selective protein loss of function in cells. In this chapter, we would like to describe all necessary steps to implement this approach for the first time in a laboratory that is not used to deal with gene databases information and related technical skills. Using either rational criteria or sophisticated—otherwise straightforward—online software, it is now reasonably feasible for everyone to design the small interfering RNA (siRNA) or the short hairpin RNA (shRNA) molecules to knockdown—or “silence”—your protein of interest. We provide recommendations on how to retrieve the mRNA sequence of your protein of interest from the online databases and to identify the nucleotide-sequence target on the mRNA. In addition, we provide clues aimed to predict the selectivity of the target chosen and to obtain a long-lasting knockdown effect by expressing shRNA from a plasmid vector. How to get high transfection efficiencies in hard-to-transfect-cells, such as primary neurons in culture, and how to test the efficacy of the RNAi approach, is also recommended. We expect to encourage researchers to use this now easily accessible technique as an alternative—or additional—approach to the usually unspecific pharmacological inhibition when studying neural metabolism.

Key words

RNA interference Small interfering RNA Short hairpin RNA Transfection methods Transfection efficiency Neurons 



This work was supported by FEDER (European regional development fund), Ministerio de Ciencia e Innovacion (SAF2010-20008 and Consolider-Ingenio CSD2007-00020), and Junta de Castilla y Leon (SA112A12-2).


  1. 1.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811PubMedCrossRefGoogle Scholar
  2. 2.
    Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952PubMedCrossRefGoogle Scholar
  3. 3.
    Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33PubMedCrossRefGoogle Scholar
  4. 4.
    Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366PubMedCrossRefGoogle Scholar
  5. 5.
    Elbashir SM, Harborth J, Weber K, Tuschl T (2002) Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26:199–213PubMedCrossRefGoogle Scholar
  6. 6.
    Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498PubMedCrossRefGoogle Scholar
  8. 8.
    Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208PubMedCrossRefGoogle Scholar
  9. 9.
    Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216PubMedCrossRefGoogle Scholar
  10. 10.
  11. 11.
    Mittal V (2004) Improving the efficiency of RNA interference in mammals. Nat Rev Genet 5:355–365PubMedCrossRefGoogle Scholar
  12. 12.
    Moffat J, Sabatini DM (2006) Building mammalian signalling pathways with RNAi screens. Nat Rev Mol Cell Biol 7:177–187PubMedCrossRefGoogle Scholar
  13. 13.
    Hannon GJ, Rossi JJ (2004) Unlocking the potential of the human genome with RNA interference. Nature 431:371–378PubMedCrossRefGoogle Scholar
  14. 14.
    Silva J, Chang K, Hannon GJ, Rivas FV (2004) RNA-interference-based functional genomics in mammalian cells: reverse genetics coming of age. Oncogene 23:8401–8409PubMedCrossRefGoogle Scholar
  15. 15.
    Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Sui G, Soohoo C, el Affar B, Gay F, Shi Y, Forrester WC (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A 99:5515–5520PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Paul CP, Good PD, Winer I, Engelke DR (2002) Effective expression of small interfering RNA in human cells. Nat Biotechnol 20:505–508PubMedCrossRefGoogle Scholar
  18. 18.
  19. 19.
    Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2009) GenBank. Nucleic Acids Res 37:D26–D31PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
  21. 21.
    Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, Clapham P, Coates G, Fairley S, Fitzgerald S, Gordon L, Hendrix M, Hourlier T, Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Larsson P, Longden I, McLaren W, Overduin B, Pritchard B, Riat HS, Rios D, Ritchie GR, Ruffier M, Schuster M, Sobral D, Spudich G, Tang YA, Trevanion S, Vandrovcova J, Vilella AJ, White S, Wilder SP, Zadissa A, Zamora J, Aken BL, Birney E, Cunningham F, Dunham I, Durbin R, Fernandez-Suarez XM, Herrero J, Hubbard TJ, Parker A, Proctor G, Vogel J, Searle SM (2010) Ensembl 2011. Nucleic Acids Res 39:D800–D806PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
  23. 23.
  24. 24.
    Ashurst JL, Chen CK, Gilbert JG, Jekosch K, Keenan S, Meidl P, Searle SM, Stalker J, Storey R, Trevanion S, Wilming L, Hubbard T (2005) The vertebrate genome annotation (Vega) database. Nucleic Acids Res 33:D459–D465PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kuhn RM, Karolchik D, Zweig AS, Wang T, Smith KE, Rosenbloom KR, Rhead B, Raney BJ, Pohl A, Pheasant M, Meyer L, Hsu F, Hinrichs AS, Harte RA, Giardine B, Fujita P, Diekhans M, Dreszer T, Clawson H, Barber GP, Haussler D, Kent WJ (2009) The UCSC genome browser database: update 2009. Nucleic Acids Res 37:D755–D761PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Leonard SA (2003) APPENDIX 1A: IUPAC/IUB single-letter codes within nucleic acid and amino acid sequences. In: Current protocols in bioinformatics. Wiley, New YorkGoogle Scholar
  27. 27.
    Leonard SA, Littlejohn TG, Baxevanis AD (2006) APPENDIX 1B common file formats. In: Current protocols in bioinformatics. Wiley, New YorkGoogle Scholar
  28. 28.
  29. 29.
  30. 30.
    Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35:D61–D65PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
  32. 32.
  33. 33.
  34. 34.
  35. 35.
  36. 36.
    Diaz-Hernandez JI, Almeida A, Delgado-Esteban M, Fernandez E, Bolaños JP (2005) Knockdown of glutamate-cysteine ligase by small hairpin RNA reveals that both catalytic and modulatory subunits are essential for the survival of primary neurons. J Biol Chem 280:38992–39001PubMedCrossRefGoogle Scholar
  37. 37.
  38. 38.
  39. 39.
    Yamada T, Morishita S (2005) Accelerated off-target search algorithm for siRNA. Bioinformatics 21:1316–1324PubMedCrossRefGoogle Scholar
  40. 40.
    Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 20:6877–6888PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ (2005) Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 23:222–226PubMedCrossRefGoogle Scholar
  42. 42.
    Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330PubMedCrossRefGoogle Scholar
  43. 43.
    Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A, Ueda R, Saigo K (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 32:936–948PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Du Q, Thonberg H, Wang J, Wahlestedt C, Liang Z (2005) A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites. Nucleic Acids Res 33:1671–1677PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, Baskerville S, Maksimova E, Robinson K, Karpilow J, Marshall WS, Khvorova A (2006) 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 3:199–204PubMedCrossRefGoogle Scholar
  46. 46.
    Naito Y, Yamada T, Ui-Tei K, Morishita S, Saigo K (2004) siDirect: highly effective, target-specific siRNA design software for mammalian RNA interference. Nucleic Acids Res 32:W124–W129PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Zecherle GN, Whelen S, Hall BD (1996) Purines are required at the 5′ ends of newly initiated RNAs for optimal RNA polymerase III gene expression. Mol Cell Biol 16:5801–5810PubMedPubMedCentralGoogle Scholar
  48. 48.
  49. 49.
  50. 50.
    Amarzguioui M, Prydz H (2004) An algorithm for selection of functional siRNA sequences. Biochem Biophys Res Commun 316:1050–1058PubMedCrossRefGoogle Scholar
  51. 51.
    Harborth J, Elbashir SM, Vandenburgh K, Manninga H, Scaringe SA, Weber K, Tuschl T (2003) Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev 13:83–105PubMedCrossRefGoogle Scholar
  52. 52.
    Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–541PubMedCrossRefGoogle Scholar
  53. 53.
    Grimm D, Wang L, Lee JS, Schurmann N, Gu S, Borner K, Storm TA, Kay MA (2010) Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver. J Clin Invest 120:3106–3119PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Martin JN, Wolken N, Brown T, Dauer WT, Ehrlich ME, Gonzalez-Alegre P (2011) Lethal toxicity caused by expression of shRNA in the mouse striatum: implications for therapeutic design. Gene Ther 18:666–673PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553PubMedCrossRefGoogle Scholar
  56. 56.
  57. 57.
    Fu C, Wehr DR, Edwards J, Hauge B (2008) Rapid one-step recombinational cloning. Nucleic Acids Res 36:e54PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Jacque JM, Triques K, Stevenson M (2002) Modulation of HIV-1 replication by RNA interference. Nature 418:435–438PubMedCrossRefGoogle Scholar
  59. 59.
    Quintana-Cabrera R, Fernandez-Fernandez S, Bobo-Jimenez V, Escobar J, Sastre J, Almeida A, Bolaños JP (2012) γ-Glutamylcysteine detoxifies reactive oxygen species by acting as glutathione peroxidase-1 cofactor. Nat Commun 3:718PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
  61. 61.
    Lewis DL, Hagstrom JE, Loomis AG, Wolff JA, Herweijer H (2002) Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat Genet 32:107–108PubMedCrossRefGoogle Scholar
  62. 62.
    Herrero-Mendez A, Almeida A, Fernandez E, Maestre C, Moncada S, Bolaños JP (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol 11:747–752PubMedCrossRefGoogle Scholar
  63. 63.
    Miyagishi M, Taira K (2002) U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol 20:497–500PubMedCrossRefGoogle Scholar
  64. 64.
    Maestre C, Delgado-Esteban M, Gomez-Sanchez JC, Bolaños JP, Almeida A (2008) Cdk5 phosphorylates Cdh1 and modulates cyclin B1 stability in excitotoxicity. EMBO J 27:2736–2745PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Almeida A, Bolaños JP, Moreno S (2005) Cdh1/Hct1-APC is essential for the survival of postmitotic neurons. J Neurosci 25:8115–8121PubMedCrossRefGoogle Scholar
  66. 66.
    McCaffrey AP, Meuse L, Pham TT, Conklin DS, Hannon GJ, Kay MA (2002) RNA interference in adult mice. Nature 418:38–39PubMedCrossRefGoogle Scholar
  67. 67.
    Song E, Lee SK, Wang J, Ince N, Ouyang N, Min J, Chen J, Shankar P, Lieberman J (2003) RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 9:347–351PubMedCrossRefGoogle Scholar
  68. 68.
    Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Castanotto D, Sakurai K, Lingeman R, Li H, Shively L, Aagaard L, Soifer H, Gatignol A, Riggs A, Rossi JJ (2007) Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC. Nucleic Acids Res 35:5154–5164PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Castanotto D, Rossi JJ (2009) The promises and pitfalls of RNA-interference-based therapeutics. Nature 457:426–433PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Akhtar S, Benter IF (2007) Nonviral delivery of synthetic siRNAs in vivo. J Clin Invest 117:3623–3632PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Chinta SJ, Kumar MJ, Hsu M, Rajagopalan S, Kaur D, Rane A, Nicholls DG, Choi J, Andersen JK (2007) Inducible alterations of glutathione levels in adult dopaminergic midbrain neurons result in nigrostriatal degeneration. J Neurosci 27:13997–14006PubMedCrossRefGoogle Scholar
  73. 73.
    Kesharwani P, Gajbhiye V, Jain NK (2012) A review of nanocarriers for the delivery of small interfering RNA. Biomaterials 33:7138–7150PubMedCrossRefGoogle Scholar
  74. 74.
    Sugimoto A (2004) High-throughput RNAi in Caenorhabditis elegans: genome-wide screens and functional genomics. Differentiation 72:81–91PubMedCrossRefGoogle Scholar
  75. 75.
    Farah MH (2007) RNAi silencing in mouse models of neurodegenerative diseases. Curr Drug Deliv 4:161–167PubMedCrossRefGoogle Scholar
  76. 76.
    Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT, Paulson HL, Yang L, Kotin RM, Davidson BL (2004) RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 10:816–820PubMedCrossRefGoogle Scholar
  77. 77.
    Mummery-Widmer JL, Yamazaki M, Stoeger T, Novatchkova M, Bhalerao S, Chen D, Dietzl G, Dickson BJ, Knoblich JA (2009) Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi. Nature 458:987–992PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Cronin SJ, Nehme NT, Limmer S, Liegeois S, Pospisilik JA, Schramek D, Leibbrandt A, Simoes Rde M, Gruber S, Puc U, Ebersberger I, Zoranovic T, Neely GG, von Haeseler A, Ferrandon D, Penninger JM (2009) Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science 325:340–343PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
  80. 80.
    Harpavat S, Cepko CL (2006) RCAS-RNAi: a loss-of-function method for the developing chick retina. BMC Dev Biol 6:2PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Sandy P, Ventura A, Jacks T (2005) Mammalian RNAi: a practical guide. Biotechniques 39:215–224PubMedCrossRefGoogle Scholar
  82. 82.
    Lee SK, Kumar P (2009) Conditional RNAi: towards a silent gene therapy. Adv Drug Deliv Rev 61:650–664PubMedCrossRefGoogle Scholar
  83. 83.
    Cazzin C, Ring CJ (2010) Recent advances in the manipulation of murine gene expression and its utility for the study of human neurological disease. Biochim Biophys Acta 1802:796–807PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology, Institute of Functional Biology and Genomics (IBFG)University of Salamanca-CSIC-IBSALSalamancaSpain

Personalised recommendations