Advertisement

Compartmental Analysis of Metabolism by 13C Magnetic Resonance Spectroscopy

  • Graeme F. MasonEmail author
  • Lihong Jiang
  • Kevin L. Behar
Protocol
Part of the Neuromethods book series (NM, volume 90)

Abstract

13C NMR, also called 13C MRS, is used to track metabolic processes in vivo. Following the administration of molecules labeled with the nonradioactive carbon isotope 13C, the isotope can be observed with MRS. If data are acquired while the 13C levels in the tissue are changing, then it may be possible to determine absolute metabolic rates. For data that are acquired after 13C levels in the tissue have stabilized, then relative rates of metabolism may be determined. The observations support the estimation of rates by fitting metabolic simulations to the data, using a formal procedure that includes the basic elements of an isotopic flow model: metabolic pools, rates, and substrate drivers. Model refinements, such as evaluation of metabolic compartments in samples that cannot be purified to a single biochemical state, can often be achieved by making multiple observations, each under conditions that emphasize one compartment more than the others. One example is measurements with different substrates, such as 13C-acetate to emphasize glial metabolism, compared to 13C-glucose to emphasize neuronal metabolism. Another is a measurement that contains more stimulated brain tissue compared to a measurement that contains less stimulated brain tissue, to assess unstimulated and stimulated metabolism. Sampling can be performed in vivo, in situ, ex vivo, and in cell cultures, and other conditions, each of which has its own limitations and advantages. This chapter is designed to provide a practical perspective on the acquisition and analysis of 13C MRS data.

Key words

NMR MRS 13Carbon isotope Compartmentation 

References

  1. 1.
    Sillerud LO, Alger JR, Shulman RG (1981) High-resolution proton NMR studies of intracellular metabolites in yeast using 13C decoupling. J Magn Reson 45:142–150Google Scholar
  2. 2.
    Sillerud LO, Shulman RG (1983) High-resolution 13C nuclear magnetic resonance studies of glucose metabolism in Escherichia coli. Biochemistry 22:1087–1094PubMedGoogle Scholar
  3. 3.
    den Hollander JA, Ugurbil K, Shulman RG (1986) 31P and [13C]NMR studies of intermediates of aerobic and anaerobic glycolysis in saccharomyces cerevisiae. Biochem J 25:212–219Google Scholar
  4. 4.
    Reibstein D, den Hollander JA, Pilkis SJ, Shulman RG (1986) Studies on the regulation of yeast phosphofructo-l-kinase: its role in aerobic and anaerobic glycolysis. Biochemistry 25:219–227PubMedGoogle Scholar
  5. 5.
    Cohen SM, Shulman RG (1982) Tissue metabolism. In: Cohen J (ed) Noninvasive probes of tissue metabolism. Wiley, New York, pp 119–147Google Scholar
  6. 6.
    Cohen SM, Shulman RG, Williamson JR, McLaughlin AC (1980) Use of 13C NMR for investigation of ethanol metabolism in perfused liver. In: Thurman RG (ed) Alcohol and aldehyde metabolizing systems, vol 4. Academic Press, New York, pp 419–432Google Scholar
  7. 7.
    Chance EM, Seeholzer SH, Kobayashi K, Williamson JR (1983) Mathematical analysis of isotope labeling in the citric acid cycle with applications to 13C NMR studies in perfused rat hearts. J Biol Chem 258:13785–13794PubMedGoogle Scholar
  8. 8.
    Bendall MR, den Hollander JA, Arias-Mendoza F, Rothman DL, Behar KL, Shulman RG (1985) Application of multipulse NMR to observe 13C-labeled metabolites in biological systems. Magn Reson Med 2:56–64PubMedGoogle Scholar
  9. 9.
    Petroff OAC, Burlina AP, Black J, Prichard JW (1991) Metabolism of [1-13C]glucose in a synaptosomally enriched fraction of rat cerebrum studied by 1H/13C magnetic resonance spectroscopy. Neurochem Res 16:1245–1251PubMedGoogle Scholar
  10. 10.
    Portais JC, Pianet I, Allard M, Merle M, Raffard G, Kien P, Biran M, Labouesse J, Caille JM, Canioni P (1991) Magnetic resonance spectroscopy and metabolism. Applications of proton and 13C NMR to the study of glutamate metabolism in cultured glial cells and human brain in vivo. Biochimie 73:93–97PubMedGoogle Scholar
  11. 11.
    Sonnewald U, Gribbestad IS, Westergaard N, Krane J, Unsglrrd G, Petersen SB, Schousboe A (1991) First direct demonstration of preferential release of citrate from astrocytes using [13C] NMR spectroscopy of cultured neurons and astrocytes. Neurosci Lett 128:235–239PubMedGoogle Scholar
  12. 12.
    Badar-Goffer RS, Ben-Yoseph O, Bachelard HS, Morris PG (1992) Neuronal-glial metabolism under depolarizing conditions – a 13C-n.m.r. study under depolarizing conditions. Biochem J 282:225–230PubMedPubMedCentralGoogle Scholar
  13. 13.
    Badar-Goffer RS, Bachelard HS, Morris PG (1990) Cerebral metabolism of acetate and glucose studied by 13C-n.m.r. spectroscopy. Biochem J 266:133–139PubMedPubMedCentralGoogle Scholar
  14. 14.
    Brainard JR, Kyner E, Rosenberg GA (1989) 13C nuclear magnetic resonance evidence for γ-aminobutyric acid formation via pyruvate carboxylase in rat brain: a metabolic basis for compartmentation. J Neurochem 53:1285–1292PubMedGoogle Scholar
  15. 15.
    Cerdán S, Kunnecke B, Seelig J (1990) Cerebral metabolism of [1,2-13C]acetate as detected by in vivo and in vitro 13C NMR. J Biol Chem 265:12916–12926PubMedGoogle Scholar
  16. 16.
    Shank RP, Leo G, Zielke HR (1993) Cerebral metabolic compartmentation as revealed by nuclear magnetic resonance anslysis of D-[1-13C]glucose metabolism. J Neurochem 61:315–323Google Scholar
  17. 17.
    Künnecke B, Cerdán S, Seelig J (1993) Cerebral metabolism of [1,2-13C]glucose and [U-13C4]3-hydroxybutyrte in rat brain as detected by 13C NMR spectroscopy. NMR Biomed 6:264–277PubMedGoogle Scholar
  18. 18.
    Chapa F, Künnecke B, Calvo R, Escobar del Rey F, Morreale de Escobar G, Cerdán S (1995) Adult-onset hypothyroidism and the cerebral metabolism of (1,2-13C)acetate as detected by 13C nuclear magnetic resonance. Endocrinology 136:296–305PubMedGoogle Scholar
  19. 19.
    Behar KL, Petroff AC, Prichard JW, Alger JR, Shulman RG (1986) Detection of metabolites in rabbit brain by 13C NMR spectroscopy following administration of [1-13C]glucose. Magn Reson Med 3:911–920PubMedGoogle Scholar
  20. 20.
    Fitzpatrick SM, Hetherington HP, Behar KL, Shulman RG (1990) The flux from glucose to glutamate in the rat brain in vivo as determined by 1H-observed, 13C-edited NMR spectroscopy. J Cerebr Blood Flow Metab 10:170–179Google Scholar
  21. 21.
    Mason GF, Rothman DL, Behar KL, Shulman RG (1992) NMR determination of TCA cycle rate and a-ketoglutarate/glutamate exchange rate in rat brain. J Cereb Blood Flow Metab 12:434–447PubMedGoogle Scholar
  22. 22.
    Beckmann N, Turkalj I, Seelig J, Keller U (1991) 13C NMR for the assessment of human brain glucose metabolism in vivo. Biochemistry 30:6362–6366PubMedGoogle Scholar
  23. 23.
    Rothman DL, Novotny EJ, Shulman GI, Howseman AM, Petroff OA, Mason G, Nixon T, Hanstock CC, Prichard JW, Shulman RG (1992) 1H-[13C] NMR measurements of [4-13C]glutamate turnover in human brain. Proc Natl Acad Sci U S A 89:9603–9606PubMedPubMedCentralGoogle Scholar
  24. 24.
    Gruetter R, Novotny EJ, Boulware SD, Mason GF, Rothman DL, Shulman GI, Prichard JW, Shulman RG (1994) Localized 13C NMR spectroscopy in the human brain of amino acid labeling from [1-13C]D-glucose. J Neurochem 63:1377–1385PubMedGoogle Scholar
  25. 25.
    Gruetter R, Novotny EJ, Boulware SD, Rothman DL, Mason GF, Shulman GI, Shulman RG, Tamborlane WV (1992) Direct measurement of brain glucose concentrations in humans by 13C NMR spectroscopy. Proc Natl Acad Sci U S A 89:1109–1112PubMedPubMedCentralGoogle Scholar
  26. 26.
    Mason GF, Gruetter R, Rothman DL, Behar KL, Shulman RG, Novotny EJ (1995) Simultaneous determination of the rates of the TCA cycle, glucose utilization, α-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR. J Cereb Blood Flow Metab 15:12–25PubMedGoogle Scholar
  27. 27.
    Shen J, Petersen KF, Behar KL, Brown P, Nixon TW, Mason GF, Petroff OA, Shulman GI, Shulman RG, Rothman DL (1999) Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proc Natl Acad Sci U S A 96:8235–8240PubMedPubMedCentralGoogle Scholar
  28. 28.
    Lebon V, Petersen KF, Cline GW, Shen J, Mason GF, Dufour S, Behar KL, Shulman GI, Rothman DL (2002) Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J Neurosci 22:1523–1531PubMedPubMedCentralGoogle Scholar
  29. 29.
    Mason GF, Petersen KF, Lebon V, Rothman DL, Shulman GI (2006) Increased brain monocarboxylic acid transport and utilization in type 1 diabetes. Diabetes 55:929–934PubMedPubMedCentralGoogle Scholar
  30. 30.
    Mason GF, Behar KL, Rothman DL, Shulman RG (1992) NMR determination of intracerebral glucose concentration and transport kinetics in rat brain. J Cereb Blood Flow Metab 12:448–455PubMedGoogle Scholar
  31. 31.
    Gruetter R, Seaquist ER, Ugurbil K (2001) A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am J Physiol Endocrinol Metab 281(1):E100–E112PubMedGoogle Scholar
  32. 32.
    Sibson NR, Mason GF, Shen J, Cline GW, Herskovits AZ, Wall JE, Behar KL, Rothman DL, Shulman RG (2001) In vivo (13)C NMR measurement of neurotransmitter glutamate cycling, anaplerosis and TCA cycle flux in rat brain during hyperammonemia. J Neurochem 76:975–989PubMedGoogle Scholar
  33. 33.
    Mason GF, Petersen KF, de Graaf RA, Shulman GI, Rothman DL (2007) Measurements of the anaplerotic rate in the human cerebral cortex using 13C MRS and [1-13C] and [2-13C]glucose. J Neurochem 100:73–86PubMedPubMedCentralGoogle Scholar
  34. 34.
    Deelchand DK, Shestov AA, Koski DM, Ugurbil K, Henry P-G (2009) Acetate transport and utilization in the rat brain. J Neurochem 109(Suppl 1):46–54PubMedPubMedCentralGoogle Scholar
  35. 35.
    Patel AB, De Graaf RA, Rothman DL, Behar KL, Mason GF (2010) Evaluation of cerebral acetate transport and metabolic rates in the rat brain in vivo using (1)H-(13)C-NMR. J Cereb Blood Flow Metab 30(6):1200–1213PubMedPubMedCentralGoogle Scholar
  36. 36.
    Sonnewald U, Westergaard N, Petersen SB, Unsgård G, Schousboe A (1993) Metabolism of [U-13C]glutamate in astrocytes studied by 13C NMR spectroscopy: incorporation of more label into lactate than into glutamine demonstrates the importance of the tricarboxylic acid cycle. J Neurochem 61:1179–1182PubMedGoogle Scholar
  37. 37.
    Sonnewald U, Westergaard N, Schousboe A, Svendsen JS, Unsgiird G, Petersen SB (1993) Direct demonstration by [13C] NMR spectroscopy that glutamine from astrocytes is a precursor for GABA synthesis in neurons. Neurochem Int 22:19–29PubMedGoogle Scholar
  38. 38.
    Westergaard N, Sonnewald U, Unsgård G, Peng L, Hertz L, Schousboe A (1994) Uptake, release, and metabolism of citrate in neurons and astrocytes in primary cultures. J Neurochem 62:1727–1733PubMedGoogle Scholar
  39. 39.
    Haberg A, Qu H, Haraldseth OY, Unsgard G, Sonnewald U (1998) In vivo injection of [1-13C]glucose and [1,2-13C]acetate combined with ex vivo 13C nuclear magnetic resonance spectroscopy: a novel approach to the study of middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 18:1223–1232PubMedGoogle Scholar
  40. 40.
    Mason GF, Pan JW, Chu WJ, Zhang YT, Newcomer BD, Hetherington HP (1999) Measurement of the tricarboxylic acid cycle rate in human grey and white matter in vivo by 13C magnetic resonance spectroscopy at 4.1T. J Cereb Blood Flow Metab 19:1179–1188PubMedGoogle Scholar
  41. 41.
    de Graaf RA, Mason GF, Patel AB, Rothman DL, Behar KL (2004) Regional glucose metabolism and glutamatergic neurotransmission in rat brain in vivo. Proc Natl Acad Sci U S A 101:12700–12705PubMedPubMedCentralGoogle Scholar
  42. 42.
    Hyder F, Chase JR, Behar KL, Mason GF, Siddeek M, Rothman DL, Shulman RG (1996) Increased tri-carboxylic acid cycle flux in rat brain during fore-paw stimulation detected by 1H-[13C] nuclear magnetic resonance spectroscopy. Proc Natl Acad Sci U S A 93:7612–7617PubMedPubMedCentralGoogle Scholar
  43. 43.
    Yang X, Hyder F, Shulman RG (1996) Activation of single whisker barrel in rat brain localized by functional magnetic resonance imaging. Proc Natl Acad Sci U S A 93(1):475–478PubMedPubMedCentralGoogle Scholar
  44. 44.
    Chen W, Zhu XH, Gruetter R, Seaquist ER, Adriany G, Ugurbil K (2001) Study of tricarboxylic acid cycle flux changes in human visual cortex during hemifield visual stimulation using (1)H-[(13)C] MRS and fMRI. Magn Reson Med 45(3):349–355PubMedGoogle Scholar
  45. 45.
    Chhina N, Kuestermann E, Halliday J, Simpson LJ, Macdonald IA, Bachelard HS, Morris PG (2001) Measurement of human tricarboxylic acid cycle rates during visual activation by (13)C magnetic resonance spectroscopy. J Neurosci Res 66(5):737–746PubMedGoogle Scholar
  46. 46.
    Hetherington HP, Mason GF, Pan JW, Ponder SL, Vaughan JT, Twieg DB, Pohost GM (1994) Evaluation of cerebral gray and white matter metabolite differences by spectroscopic imaging at 41T. Magn Reson Med 32:565–571PubMedGoogle Scholar
  47. 47.
    Mason GF, Chu WJ, Ponder SL, Vaughan JT, Adams D, Hetherington HP (1998) Evaluation of 31P metabolite levels in grey matter and white matter using multi-slice tissue segmentation and spectroscopic imaging of human brain. Magn Reson Med 39:346–353PubMedGoogle Scholar
  48. 48.
    Doyle TJ, Bedell BJ, Narayana PA (1995) Relative concentrations of proton MR visible neurochemicals in gray and white matter in human brain. Magn Reson Med 33(6):755–759PubMedGoogle Scholar
  49. 49.
    Grutzner JB, Santini RE (1971) Coherent broad-band decoupling – an alternative to proton noise decoupling in carbon-13 nuclear magnetic resonance spectroscopy. J Magn Reson 19:173–187Google Scholar
  50. 50.
    Shaka AJ, Barker PB, Freeman R (1985) Evaluation of a new broadband decoupling sequence: WALTZ-16. J Magn Reson 53:313–340Google Scholar
  51. 51.
    Artemov D, Bhujwalla ZM, Glickson JD (1995) In vivo selective measurement of (1-13C)-glucose metabolism in tumors by heteronuclear cross polarization. Magn Reson Med 33(2):151–155PubMedGoogle Scholar
  52. 52.
    Li S, Zhang Y, Wang S, Yang J, Ferraris Araneta M, Farris A, Johnson C, Fox S, Innis R, Shen J (2009) In vivo 13C magnetic resonance spectroscopy of human brain on a clinical 3 T scanner using [2-13C]glucose infusion and low-power stochastic decoupling. Magn Reson Med 62(3):565–573PubMedPubMedCentralGoogle Scholar
  53. 53.
    Sailasuta N, Robertson LW, Harris KC, Gropman AL, Allen PS, Ross BD (2008) Clinical NOE 13C MRS for neuropsychiatric disorders of the frontal lobe. J Magn Reson 195(2):219–225PubMedPubMedCentralGoogle Scholar
  54. 54.
    Choi I-Y, Tkáč I, Gruetter R (2000) Single-shot, three-dimensional “non-echo” localization method for in vivo NMR spectroscopy. Magn Reson Med 44(3):387–394PubMedGoogle Scholar
  55. 55.
    Moreno A, Ross BD, Blüml S (2001) Direct determination of the N‐acetyl‐l‐aspartate synthesis rate in the human brain by 13C MRS and [1‐13C] glucose infusion. J Neurochem 77(1):347–350PubMedGoogle Scholar
  56. 56.
    Blüml S (1999) In vivo quantitation of cerebral metabolite concentrations using natural abundance 13C MRS at 1.5 T. J Magn Reson 136(2):219–225PubMedGoogle Scholar
  57. 57.
    Yang J, Johnson C, Shen J (2009) Detection of reduced GABA synthesis following inhibition of GABA transaminase using in vivo magnetic resonance signal of [13C] GABA C1. J Neurosci Methods 182(2):236–243PubMedPubMedCentralGoogle Scholar
  58. 58.
    Morris GA, Freeman R (1979) Enhancement of nuclear magnetic resonance signals by polarization transfer. J Am Chem Soc 101:760–762Google Scholar
  59. 59.
    Burum DB, Ernst RR (1980) Net polarization transfer via a J-ordered state for signal enhancement of low-sensitivity nuclei. J Magn Reson 39:163–168Google Scholar
  60. 60.
    Doddrell DM, Pegg DT, Bendall MR (1982) Distortionless enhancement of NMR signals by polarization transfer. J Magn Reson 48:323–327Google Scholar
  61. 61.
    Bendall MR, Pegg DT (1983) Complete accurate editing of decoupled 13C spectra using DEPT and a quaternary-only sequence. J Magn Reson 53:272–296Google Scholar
  62. 62.
    Henry PG, Tkáč I, Gruetter R (2003) 1H‐localized broadband 13C NMR spectroscopy of the rat brain in vivo at 9.4 T. Magn Reson Med 50(4):684–692PubMedGoogle Scholar
  63. 63.
    Li S, Chen Z, Zhang Y, Lizak M, Bacher J, Innis RB, Shen J (2005) In vivo single‐shot, proton‐localized 13C MRS of rhesus monkey brain. NMR Biomed 18(8):560–569PubMedGoogle Scholar
  64. 64.
    Xu S, Shen J (2006) In vivo dynamic turnover of cerebral 13C isotopomers from [U–13C] glucose. J Magn Reson 182(2):221–228PubMedGoogle Scholar
  65. 65.
    Rothman DL (1987) Application of multipulse 1H and 13C NMR for measuring in vivo rates of metabolism. Ph.D. Thesis, Yale University, New Haven, CTGoogle Scholar
  66. 66.
    Novotny EJ, Ogino T, Rothman DL, Petroff OAC, Prichard JW, Shulman RG (1990) Direct carbon versus proton heteronuclear editing of 2–13 C ethanol in rabbit brain in vivo : a sensitivity comparison. Magn Reson Med 16:431–443PubMedGoogle Scholar
  67. 67.
    Ordidge RJ, Connelly A, Lohman AB (1986) Image-selected in vivo spectroscopy (ISIS). A new technique for spatially selective nmr spectroscopy. J Magn Reson 66:283–294Google Scholar
  68. 68.
    Bottomley PA (1984) Patent US 4 480 228Google Scholar
  69. 69.
    Ordidge RJ, Bendall MR, Gordon RE, Connelly A (1985) Volume selection for in vivo biological spectroscopy. Magnetic resonance in biology and medicine. McGraw-Hill, New Delhi, pp 387–397Google Scholar
  70. 70.
    Frahm J, Merboldt K-D, Hänicke W (1987) Localized proton spectroscopy using stimulated echoes. J Magn Reson (1969) 72(3):502–508Google Scholar
  71. 71.
    Kimmich R, Hoepfel D (1987) Volume-selective multipulse spin-echo spectroscopy. J Magn Reson (1969) 72(2):379–384Google Scholar
  72. 72.
    Granot J (1986) Selected volume excitation using stimulated echoes (VEST). Applications to spatially localized spectroscopy and imaging. J Magn Reson (1969) 70(3):488–492Google Scholar
  73. 73.
    McKinnon G (1986) Volume selective excitation spectroscopy using the stimulated echo. Proceedings of the 5th annual meeting of the society of magnetic resonance in medicine, p 168Google Scholar
  74. 74.
    Rothman DL, Behar KL, Hetherington HP, den Hollander JA, Bendall MR, Petroff OAC, Shulman RG (1985) 1H-Observe/13C-decouple spectroscopic measurements of lactate and glutamate in the rat brain in vivo. Proc Natl Acad Sci U S A 82:1633–1637Google Scholar
  75. 75.
    Pan JW, Stein DT, Telang F, Lee JH, Shen J, Brown P, Cline G, Mason GF, Shulman GI, Rothman DL (2000) Spectroscopic imaging of glutamate C4 turnover in human brain. Magn Reson Med 44(5):673–679PubMedGoogle Scholar
  76. 76.
    Chen W, Adriany G, Zhu XH, Gruetter R, Ugurbil K (1998) Detecting natural abundance carbon signal of NAA metabolite within 12‐cm3 localized volume of human brain using 1H‐{13C} NMR spectroscopy. Magn Reson Med 40(2):180–184PubMedGoogle Scholar
  77. 77.
    Pfeuffer J, Tkác I, Choi I-Y, Merkle H, Ugurbil K, Garwood M, Gruetter R (1999) Localized in vivo 1H NMR detection of neurotransmitter labeling in rat brain during infusion of [1-13C] D-glucose. Magn Reson Med 41(6):1077–1083PubMedGoogle Scholar
  78. 78.
    Manor D, Rothman D, Mason G, Hyder F, Petroff O, Behar K (1996) The rate of turnover of cortical GABA from [1-13C] glucose is reduced in rats treated with the GABA-transaminase inhibitor vigabatrin (γ-vinyl GABA). Neurochem Res 21(9):1031–1041PubMedGoogle Scholar
  79. 79.
    Garwood M, Merkle H (1991) Heteronuclear spectral editing with adiabatic pulses. J Magn Reson 94:180–185Google Scholar
  80. 80.
    Schupp DG, Merkle H, Ellermann JM, Ke Y, Garwood M (1993) Localized detection of glioma glycolysis using edited tH MRS. Magn Reson Med 30:18–27PubMedGoogle Scholar
  81. 81.
    van Zijl PCM, Chesnick AS, DesPres D, Moonen CTW, Ruiz-Cabello J, van Gelderen P (1993) In vivo proton spectroscopy and spectroscopic imaging of (1-13C)-glucose and its metabolic products. Magn Reson Med 30:544–551PubMedGoogle Scholar
  82. 82.
    Watanabe H, Umeda M, Ishihara Y, Okamoto K, Oshio K, Kanamatsu T, Tsukada Y (2000) Human brain glucose metabolism mapping using multislice 2D 1H-13C correlation HSQC spectroscopy. Magn Reson Med 43(4):525–533PubMedGoogle Scholar
  83. 83.
    Patel AB, de Graaf RA, Mason GF, Kanamatsu T, Rothman DL, Shulman RG, Behar KL (2004) Glutamatergic neurotransmission and neuronal glucose oxidation are coupled during intense neuronal activation. J Cereb Blood Flow Metab 24:972–985PubMedGoogle Scholar
  84. 84.
    Sibson NR, Dhankhar A, Mason G, Behar KL, Rothman DL, Shulman RG (1997) In vivo 13C NMR measurements of cerebral glutamine synthesis as evidence for glutamate–glutamine cycling. Proc Natl Acad Sci U S A 94:2699–2704PubMedPubMedCentralGoogle Scholar
  85. 85.
    Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG (1998) Stoichiometric coupling of brain glucose metabolism and glutamate cycling. Proc Natl Acad Sci U S A 95:316–321PubMedPubMedCentralGoogle Scholar
  86. 86.
    Erecińska M, Silver IA (1990) Metabolism and role of glutamate in mammalian brain. Prog Neurobiol 35(4):245–296PubMedGoogle Scholar
  87. 87.
    Van den Berg CJ, Garfinkel D (1971) A simulation study of brain compartments. Metabolism of glutamate and related substances in mouse brain. Biochem J 123:211–218PubMedGoogle Scholar
  88. 88.
    Mason GF, Pan JW, Ponder SL, Twieg DB, Pohost GM, Hetherington HP (1994) Detection of brain glutamate and glutamine in spectroscopic images at 4.1T. Magn Reson Med 32(1):142–145PubMedGoogle Scholar
  89. 89.
    Théberge J, Bartha R, Drost DJ, Menon RS, Malla A, Takhar J, Neufeld RW, Rogers J, Pavlosky W, Schaefer B (2002) Glutamate and glutamine measured with 4.0T proton MRS in never-treated patients with schizophrenia and healthy volunteers. Am J Psychiatry 159(11):1944–1946PubMedGoogle Scholar
  90. 90.
    Tkac I, Starcuk Z, Choi I, Gruetter R (1999) In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 41:649–656PubMedGoogle Scholar
  91. 91.
    Rowland LM, Bustillo JR, Mullins PG, Jung RE, Lenroot R, Landgraf E, Barrow R, Yeo R, Lauriello J, Brooks WM (2005) Effects of ketamine on anterior cingulate glutamate metabolism in healthy humans: a 4-T proton MRS study. Am J Psychiatry 162(2):394–396PubMedGoogle Scholar
  92. 92.
    Hu J, Yang S, Xuan Y, Jiang Q, Yang Y, Haacke EM (2007) Simultaneous detection of resolved glutamate, glutamine, and γ-aminobutyric acid at 4T. J Magn Reson 185(2):204–213PubMedPubMedCentralGoogle Scholar
  93. 93.
    Kaiser LG, Schuff N, Cashdollar N, Weiner MW (2005) Age-related glutamate and glutamine concentration changes in normal human brain: 1H MR spectroscopy study at 4T. Neurobiol Aging 26(5):665–672PubMedPubMedCentralGoogle Scholar
  94. 94.
    de Graaf RA, Mason GF, Patel AB, Behar KL, Rothman DL (2003) In vivo 1H-[13C]-NMR spectroscopy of cerebral metabolism. NMR Biomed 16:339–357PubMedGoogle Scholar
  95. 95.
    Ross B, Lin A, Harris K, Bhattacharya P, Schweinsburg B (2003) Clinical experience with 13C MRS in vivo. NMR Biomed 16(6–7):358–369PubMedGoogle Scholar
  96. 96.
    Blüml S, Moreno A, Hwang JH, Ross BD (2001) 1-13C glucose magnetic resonance spectroscopy of pediatric and adult brain disorders. NMR Biomed 14(1):19–32PubMedGoogle Scholar
  97. 97.
    Wang Z, Lin JC, Mao W, Liu W, Smith MB, Collins CM (2007) SAR and temperature: simulations and comparison to regulatory limits for MRI. J Magn Reson Imaging 26(2):437–441PubMedPubMedCentralGoogle Scholar
  98. 98.
    Nguyen U, Brown S, Chang I, Krycia J, Mirotznik MS (2003) Numerical evaluation of heating in the human head due to magnetic resonance imaging (MRI). Medical imaging 2003. Int Soc Opt Photon 2003:627–638Google Scholar
  99. 99.
    Shellock FG (1992) Thermal responses in human subjects exposed to magnetic resonance imaging. Ann N Y Acad Sci 649(1):260–272PubMedGoogle Scholar
  100. 100.
    Van der Veen J, De Beer R, Luyten P, Van Ormondt D (1988) Accurate quantification of in vivo 31P NMR signals using the variable projection method and prior knowledge. Magn Reson Med 6(1):92–98PubMedGoogle Scholar
  101. 101.
    Slotboom J, Boesch C, Kreis R (1998) Versatile frequency domain fitting using time domain models and prior knowledge. Magn Reson Med 39(6):899–911PubMedGoogle Scholar
  102. 102.
    Provencher SW (2001) Automatic quantitation of localized in vivo1H spectra with LCModel. NMR Biomed 14(4):260–264PubMedGoogle Scholar
  103. 103.
    Mason GF, Petersen KF, de Graaf RA, Kanamatsu T, Otsuki T, Shulman GI, Rothman DL (2003) A Comparison of 13C NMR measurements of the rates of glutamine synthesis and the tricarboxylic acid cycle during oral and intravenous administration of [1-13C]glucose. Brain Res Protoc 10:181–190Google Scholar
  104. 104.
    Ljunggren B, Schutz H (1974) Changes in energy state and acid-base parameters of the rat brain during complete compression ischemia. Brain Res 73(2):277–289PubMedGoogle Scholar
  105. 105.
    Winn HR, Rubio R, Berne RM (1979) Brain adenosine production in the rat during 60 seconds of ischemia. Circ Res 45(4):486–492PubMedGoogle Scholar
  106. 106.
    Erdő SL (1984) Postmortem increase of GABA levels in peripheral rat tissues: prevention by 3-mercapto-propionic acid. J Neural Transm 60(3–4):303–314PubMedGoogle Scholar
  107. 107.
    Ponten U, Ratcheson RA, Salford LG, Siesjö BK (1973) Optimal freezing conditions for cerebral metabolites in rats. J Neurochem 21(5):1127–1138PubMedGoogle Scholar
  108. 108.
    Mayne M, Shepel PN, Geiger JD (1999) Recovery of high-integrity mRNA from brains of rats killed by high-energy focused microwave irradiation. Brain Res Protoc 4(3):295–302Google Scholar
  109. 109.
    Waniewski RA, Martin DL (1998) Preferential utilization of acetate by astrocytes is attributable to transport. J Neurosci 18(14):5225–5233PubMedGoogle Scholar
  110. 110.
    Rae C, Fekete AD, Kashem MA, Nasrallah FA, Bröer S (2012) Metabolism, compartmentation, transport and production of acetate in the cortical brain tissue slice. Neurochem Res 37(11):2541–2553PubMedGoogle Scholar
  111. 111.
    Brand A, Richter-Landsberg C, Leibfritz D (1997) Metabolism of acetate in rat brain neurons, astrocytes and cocultures: metabolic interactions between neurons and glia cells, monitored by NMR spectroscopy. Cell Mol Biol (Noisy-le-Grand, France) 43(5):645Google Scholar
  112. 112.
    Jiang L, Gulanski BI, De Feyter HM, Weinzimer SA, Pittman B, Guidone E, Koretski J, Harman S, Petrakis IL, Krystal JH, Mason GF (2013) Increased brain uptake and oxidation of acetate in heavy drinkers. J Clin Invest 123(4):1605–1614PubMedPubMedCentralGoogle Scholar
  113. 113.
    Savaki HE, Davidsen L, Smith C, Sokoloff L (1980) Measurement of free glucose turnover in brain. J Neurochem 35(2):495–502PubMedGoogle Scholar
  114. 114.
    Pardridge WM, Oldendorf WH (1977) Transport of metabolic substrates through the blood–brain barrier. J Neurochem 28(1):5–12PubMedGoogle Scholar
  115. 115.
    Buschiazzo PM, Terrell EB, Regen DM (1970) Sugar transport across the blood–brain barrier. Am J Physiol (Legacy Content) 219(5):1505–1513Google Scholar
  116. 116.
    Sailasuta N, Abulseoud O, Harris KC, Ross BD (2010) Glial dysfunction in abstinent methamphetamine abusers. J Cerebr Blood Flow Metab 30(5):950–960Google Scholar
  117. 117.
    Sailasuta N, Tran TT, Harris KC, Ross BD (2010) Swift acetate glial assay (SAGA): an accelerated human 13C MRS brain exam for clinical diagnostic use. J Magn Reson 207(2):352–355PubMedPubMedCentralGoogle Scholar
  118. 118.
    Tsukada Y, Kanamatsu T, Watanabe H, Okamoto K (1998) In vivo investigation of glutamate–glutamine metabolism in hyperammonemic monkey brain using 13C-magnetic resonance spectroscopy. Dev Neurosci 20(4–5):427–433PubMedGoogle Scholar
  119. 119.
    Rothman DL, Behar KL, Hyder F, Shulman RG (2003) In vivo NMR studies of the glutamate neurotransmitter flux and neuroenergetics: implications for brain function. Annu Rev Physiol 65(1):401–427PubMedGoogle Scholar
  120. 120.
    Attwood PV, Tipton PA, Cleland W (1986) Carbon-13 and deuterium isotope effects on oxalacetate decarboxylation by pyruvate carboxylase. Biochemistry 25(25):8197–8205PubMedGoogle Scholar
  121. 121.
    Melzer E, Schmidt H (1987) Carbon isotope effects on the pyruvate dehydrogenase reaction and their importance for relative carbon-13 depletion in lipids. J Biol Chem 262(17):8159–8164PubMedGoogle Scholar
  122. 122.
    Tipton PA, Cleland W (1988) Carbon-13 and deuterium isotope effects on the catalytic reactions of biotin carboxylase. Biochemistry 27(12):4325–4331PubMedGoogle Scholar
  123. 123.
    Barrett PHR, Bell BM, Cobelli C, Golde H, Schumitzky A, Vicini P, Foster DM (1998) SAAM II: simulation, analysis, and modeling software for tracer and pharmacokinetic studies. Metabolism 47(4):484–492PubMedGoogle Scholar
  124. 124.
    Garcia-Martin ML, Garcia-Espinosa MA, Ballesteros P, Bruix M, Cerdan S (2002) Hydrogen turnover and subcellular compartmentation of hepatic [2-13C] glutamate and [3-13C] aspartate as detected by 13C NMR. J Biol Chem 277(10):7799–7807PubMedGoogle Scholar
  125. 125.
    Valette J, Chaumeil M, Guillermier M, Bloch G, Hantraye P, Lebon V (2008) Diffusion-weighted NMR spectroscopy allows probing of 13C labeling of glutamate inside distinct metabolic compartments in the brain. Magn Reson Med 60(2):306–311PubMedGoogle Scholar
  126. 126.
    Rothman DL, Novotny EJ, Shulman GI, Howseman AM, Petroff OA, Mason G, Nixon T, Hanstock CC, Prichard JW, Shulman RG (1992) 1H-[13C] NMR measurements of [4-13C] glutamate turnover in human brain. Proc Natl Acad Sci 89(20):9603–9606PubMedPubMedCentralGoogle Scholar
  127. 127.
    Duarte JMN, Lanz B, Gruetter R (2011) Compartmentalized cerebral metabolism of [1, 6-13C] glucose determined by in vivo 13C NMR spectroscopy at 14.1 T. Front Neuroenerg 3:3Google Scholar
  128. 128.
    Deelchand DK, Nelson C, Shestov AA, Uğurbil K, Henry P-G (2009) Simultaneous measurement of neuronal and glial metabolism in rat brain in vivo using co-infusion of [1,6-13C2] glucose and [1,2-13C2] acetate. J Magn Reson 196(2):157–163PubMedPubMedCentralGoogle Scholar
  129. 129.
    Kanamatsu T, Tsukada Y (1999) Effects of ammonia on the anaplerotic pathway and amino acid metabolism in the brain: an ex vivo 13C NMR spectroscopic study of rats after administering [2-13C] glucose with or without ammonium acetate. Brain Res 841(1):11–19PubMedGoogle Scholar
  130. 130.
    Patel AB, de Graaf RA, Mason GF, Rothman DL, Shulman RG, Behar KL (2005) The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc Natl Acad Sci U S A 102(15):5588–5593PubMedPubMedCentralGoogle Scholar
  131. 131.
    Pan JW, de Graaf RA, Petersen KF, Shulman GI, Hetherington HP, Rothman DL (2002) β-Hydroxybutyrate metabolism in human brain. J Cerebr Blood Flow Metab 22(7):890–898Google Scholar
  132. 132.
    Mason GF, Rothman DL (2004) Basic principles of metabolic modeling of NMR 13C isotopic turnover to determine rates of brain metabolism in vivo. Metab Eng 6(1):75–84PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Graeme F. Mason
    • 1
    • 2
    Email author
  • Lihong Jiang
    • 3
  • Kevin L. Behar
    • 4
  1. 1.Department of Diagnostic Radiology, Magnetic Resonance Research CenterYale University School of MedicineNew HavenUSA
  2. 2.Department of PsychiatryYale University School of MedicineNew HavenUSA
  3. 3.Department of Diagnostic Radiology, Magnetic Resonance Research CenterYale University School of MedicineNew HavenUSA
  4. 4.Department of PsychiatryYale University School of MedicineNew HavenUSA

Personalised recommendations