Measuring Cerebral Hemodynamics and Energy Metabolism by Near-Infrared Spectroscopy

  • Keith St. LawrenceEmail author
  • Kyle Verdecchia
  • Jonathan Elliott
  • Mamadou Diop
Part of the Neuromethods book series (NM, volume 90)


The brain is extremely vulnerable to ischemia due to its high metabolic demand and reliance on cerebral blood flow (CBF) for a continuous supply of oxygen and glucose. This vulnerability is a major focus of intensive care management of adult patients with neurological emergencies and critically ill newborns. And it has led to the search for suitable bedside monitoring technologies to assist the intensivist team identify critical perfusion levels before brain injury occurs. Near-infrared spectroscopy has long been considered ideal for neuromonitoring because the technology is noninvasive, safe, and portable. This chapter will present the methodology and application of one NIRS approach, based on tracer kinetic modeling, for quantifying cerebral hemodynamics and energy metabolism.

Key words

Near-infrared spectroscopy Tracer kinetics Contrast-enhanced imaging Cerebral blood flow Blood–brain barrier permeability Cerebral metabolic rate of oxygen 


  1. 1.
    Jöbsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198(4323):1264–1267PubMedCrossRefGoogle Scholar
  2. 2.
    Yodh A, Chance B (1995) Spectroscopy and imaging with diffusing light. Phys Today 48(3):34CrossRefGoogle Scholar
  3. 3.
    Ferrari M, Quaresima V (2012) A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 63(2):921–935PubMedCrossRefGoogle Scholar
  4. 4.
    Habermehl C, Holtze S, Steinbrink J, Koch SP, Obrig H, Mehnert J, Schmitz CH (2012) Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography. Neuroimage 59(4):3201–3211PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    White BR, Culver JP (2010) Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance. J Biomed Opt 15(2):026006PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    De Backer D, Ospina-Tascon G, Salgado D, Favory R, Creteur J, Vincent J-L (2010) Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med 36(11):1813–1825PubMedCrossRefGoogle Scholar
  7. 7.
    English SW, Turgeon AF, Owen E, Doucette S, Pagliarello G, McIntyre L (2013) Protocol management of severe traumatic brain injury in intensive care units: a systematic review. Neurocrit Care 18(1):131–142PubMedCrossRefGoogle Scholar
  8. 8.
    Wartenberg KE (2011) Critical care of poor-grade subarachnoid hemorrhage. Curr Opin Crit Care 17(2):85–93PubMedCrossRefGoogle Scholar
  9. 9.
    Singh V, Edwards NJ (2013) Advances in the critical care management of ischemic stroke. Stroke Res Treat 2013:510481PubMedPubMedCentralGoogle Scholar
  10. 10.
    Murkin JM, Arango M (2009) Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaesth 103(Suppl):i3–i13PubMedCrossRefGoogle Scholar
  11. 11.
    Ghosh A, Elwell C, Smith M (2012) Review article: cerebral near-infrared spectroscopy in adults: a work in progress. Anesth Analg 115(6):1373–1383PubMedCrossRefGoogle Scholar
  12. 12.
    Edwards AD, Wyatt JS, Richardson C, Delpy DT, Cope M, Reynolds EO (1988) Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy. Lancet 2(8614):770–771PubMedCrossRefGoogle Scholar
  13. 13.
    Yoxall CW, Weindling AM (1998) Measurement of cerebral oxygen consumption in the human neonate using near infrared spectroscopy: cerebral oxygen consumption increases with advancing gestational age. Pediatr Res 44(3):283–290PubMedCrossRefGoogle Scholar
  14. 14.
    Jones TH, Morawetz RB, Crowell RM, Marcoux FW, FitzGibbon SJ, DeGirolami U, Ojemann RG (1981) Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg 54(6):773–782PubMedCrossRefGoogle Scholar
  15. 15.
    Astrup J, Siesjö BK, Symon L (1981) Thresholds in cerebral ischemia – the ischemic penumbra. Stroke 12(6):723–725PubMedCrossRefGoogle Scholar
  16. 16.
    Heiss WD (2000) Ischemic penumbra: evidence from functional imaging in man. J Cereb Blood Flow Metab 20(9):1276–1293PubMedCrossRefGoogle Scholar
  17. 17.
    Patel J, Marks K, Roberts I, Azzopardi D, Edwards AD (1998) Measurement of cerebral blood flow in newborn infants using near infrared spectroscopy with indocyanine green. Pediatr Res 43(1):34–39PubMedCrossRefGoogle Scholar
  18. 18.
    Wintermark M, Sesay M, Barbier E, Borbély K, Dillon WP, Eastwood JD, Glenn TC, Grandin CB, Pedraza S, Soustiel J-F, Nariai T, Zaharchuk G, Caillé J-M, Dousset V, Yonas H (2005) Comparative overview of brain perfusion imaging techniques. Stroke 36(9):e83–e99PubMedCrossRefGoogle Scholar
  19. 19.
    Wey H-Y, Desai VR, Duong TQ (2013) A review of current imaging methods used in stroke research. Neurol Res 35(10):1092–1102PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Liu H, Boas DA, Zhang Y, Yodh AG, Chance B (1995) Determination of optical properties and blood oxygenation in tissue using continuous NIR light. Phys Med Biol 40(11):1983–1993PubMedCrossRefGoogle Scholar
  21. 21.
    Durduran T, Yodh AG (2013) Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement. Neuroimage 85(Pt 1):51–63PubMedGoogle Scholar
  22. 22.
    Zierler K (2000) Indicator dilution methods for measuring blood flow, volume, and other properties of biological systems: a brief history and memoir. Ann Biomed Eng 28(8):836–848PubMedCrossRefGoogle Scholar
  23. 23.
    Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 27(4):476–483PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6(12):731–744PubMedGoogle Scholar
  25. 25.
    Springett R, Sakata Y, Delpy DT (2001) Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green. Phys Med Biol 46(8):2209–2225PubMedCrossRefGoogle Scholar
  26. 26.
    Zierler KL (1965) Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 16:309–321PubMedCrossRefGoogle Scholar
  27. 27.
    Brown DW, Picot P, Naeini JG, Springett R, Delpy DT, Lee T-Y (2002) Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets. Pediatr Res 51(5):564–570PubMedCrossRefGoogle Scholar
  28. 28.
    Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 36(5):715–725PubMedCrossRefGoogle Scholar
  29. 29.
    Kuikka JT, Bassingthwaighte JB, Henrich MM, Feinendegen LE (1991) Mathematical modelling in nuclear medicine. Eur J Nucl Med 18(5):351–362PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Sourbron SP, Buckley DL (2012) Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability. Phys Med Biol 57(2):R1–R33PubMedCrossRefGoogle Scholar
  31. 31.
    Watabe H, Ikoma Y, Kimura Y, Naganawa M, Shidahara M (2006) PET kinetic analysis – compartmental model. Ann Nucl Med 20(9):583–588PubMedCrossRefGoogle Scholar
  32. 32.
    St Lawrence K, Verdecchia K, Elliott J, Tichauer K, Diop M, Hoffman L, Lee T-Y (2013) Kinetic model optimization for characterizing tumour physiology by dynamic contrast-enhanced near-infrared spectroscopy. Phys Med Biol 58(5):1591–1604PubMedCrossRefGoogle Scholar
  33. 33.
    St Lawrence KS, Lee TY (1998) An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: I. Theoretical derivation. J Cereb Blood Flow Metab 18(12):1365–1377PubMedCrossRefGoogle Scholar
  34. 34.
    Paulson OB (2002) Blood–brain barrier, brain metabolism and cerebral blood flow. Eur Neuropsychopharmacol 12(6):495–501PubMedCrossRefGoogle Scholar
  35. 35.
    Koh TS, Zeman V, Darko J, Lee TY, Milosevic MF, Haider M, Warde P, Yeung IW (2001) The inclusion of capillary distribution in the adiabatic tissue homogeneity model of blood flow. Phys Med Biol 46(5):1519–1538PubMedCrossRefGoogle Scholar
  36. 36.
    Schabel MC (2012) A unified impulse response model for DCE-MRI. Magn Reson Med 68(5):1632–1646PubMedCrossRefGoogle Scholar
  37. 37.
    Siesjö BK (1978) Brain energy metabolism. Wiley, New York, p 607Google Scholar
  38. 38.
    Phelps ME, Huang SC, Hoffman EJ, Kuhl DE (1979) Validation of tomographic measurement of cerebral blood volume with C-11-labeled carboxyhemoglobin. J Nucl Med 20(4):328–334PubMedGoogle Scholar
  39. 39.
    Iijima T, Aoyagi T, Iwao Y, Masuda J, Fuse M, Kobayashi N, Sankawa H (1997) Cardiac output and circulating blood volume analysis by pulse dye-densitometry. J Clin Monit 13(2):81–89PubMedCrossRefGoogle Scholar
  40. 40.
    Hillman EMC (2007) Optical brain imaging in vivo: techniques and applications from animal to man. J Biomed Opt 12(5):051402PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58(11):R37–R61PubMedCrossRefGoogle Scholar
  42. 42.
    Matcher SJ, Cope M, Delpy DT (1994) Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy. Phys Med Biol 39(1):177–196PubMedCrossRefGoogle Scholar
  43. 43.
    Brown DW, Hadway J, Lee T-Y (2003) Near-infrared spectroscopy measurement of oxygen extraction fraction and cerebral metabolic rate of oxygen in newborn piglets. Pediatr Res 54(6):861–867PubMedCrossRefGoogle Scholar
  44. 44.
    Liebert A, Wabnitz H, Steinbrink J, Möller M, Macdonald R, Rinneberg H, Villringer A, Obrig H (2005) Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance. Neuroimage 24(2):426–435PubMedCrossRefGoogle Scholar
  45. 45.
    Weigl W, Milej D, Gerega A, Toczylowska B, Kacprzak M, Sawosz P, Botwicz M, Maniewski R, Mayzner-Zawadzka E, Liebert A (2014) Assessment of cerebral perfusion in post-traumatic brain injury patients with the use of ICG-bolus tracking method. Neuroimage 85(Pt 1):555–565PubMedCrossRefGoogle Scholar
  46. 46.
    Liebert A, Wabnitz H, Obrig H, Erdmann R, Möller M, Macdonald R, Rinneberg H, Villringer A, Steinbrink J (2006) Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain. Neuroimage 31(2):600–608PubMedCrossRefGoogle Scholar
  47. 47.
    Milej D, Gerega A, Zołek N, Weigl W, Kacprzak M, Sawosz P, Mączewska J, Fronczewska K, Mayzner-Zawadzka E, Królicki L, Maniewski R, Liebert A (2012) Time-resolved detection of fluorescent light during inflow of ICG to the brain – a methodological study. Phys Med Biol 57(20):6725–6742PubMedCrossRefGoogle Scholar
  48. 48.
    Re R, Contini D, Caffini M, Cubeddu R, Spinelli L, Torricelli A (2010) A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing. Rev Sci Instrum 81(11):113101PubMedCrossRefGoogle Scholar
  49. 49.
    Ntziachristos V, Chance B (2001) Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy. Med Phys 28(6):1115–1124PubMedCrossRefGoogle Scholar
  50. 50.
    Liebert A, Wabnitz H, Grosenick D, Macdonald R (2003) Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media. J Biomed Opt 8(3):512–516PubMedCrossRefGoogle Scholar
  51. 51.
    Diop M, Tichauer KM, Elliott JT, Migueis M, Lee T-Y, St Lawrence K (2010) Comparison of time-resolved and continuous-wave near-infrared techniques for measuring cerebral blood flow in piglets. J Biomed Opt 15(5):057004PubMedCrossRefGoogle Scholar
  52. 52.
    Kienle A, Patterson MS (1997) Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium. J Opt Soc Am A Opt Image Sci Vis 14(1):246–254PubMedCrossRefGoogle Scholar
  53. 53.
    Verdecchia K, Diop M, Lee T-Y, St Lawrence K (2013) Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy. J Biomed Opt 18(2):27007PubMedCrossRefGoogle Scholar
  54. 54.
    Pine D, Weitz D, Chaikin P, Herbolzheimer E (1988) Diffusing wave spectroscopy. Phys Rev Lett 60(12):1134–1137PubMedCrossRefGoogle Scholar
  55. 55.
    Boas D, Campbell L, Yodh A (1995) Scattering and imaging with diffusing temporal field correlations. Phys Rev Lett 75(9):1855–1858PubMedCrossRefGoogle Scholar
  56. 56.
    Dietsche G, Ninck M, Ortolf C, Li J, Jaillon F, Gisler T (2007) Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue. Appl Opt 46(35):8506–8514PubMedCrossRefGoogle Scholar
  57. 57.
    Cheung C, Culver JP, Takahashi K, Greenberg JH, Yodh AG (2001) In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies. Phys Med Biol 46(8):2053–2065PubMedCrossRefGoogle Scholar
  58. 58.
    Buckley EM, Cook NM, Durduran T, Kim MN, Zhou C, Choe R, Yu G, Schultz S, Sehgal CM, Licht DJ, Arger PH, Putt ME, Hurt HH, Yodh AG (2009) Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound. Opt Express 17(15):12571–12581PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kim MN, Durduran T, Frangos S, Edlow BL, Buckley EM, Moss HE, Zhou C, Yu G, Choe R, Maloney-Wilensky E, Wolf RL, Grady MS, Greenberg JH, Levine JM, Yodh AG, Detre JA, Kofke WA (2010) Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults. Neurocrit Care 12(2):173–180PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Carp SA, Dai GP, Boas DA, Franceschini MA, Kim YR (2010) Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin labeling MRI; towards MRI-optical continuous cerebral metabolic monitoring. Biomed Opt Express 1(2):553–565PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Diop M, Verdecchia K, Lee T-Y, St Lawrence K (2011) Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements. Biomed Opt Express 2(7):2068–2081PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Durduran T, Yu G, Burnett MG, Detre JA, Greenberg JH, Wang J, Zhou C, Yodh AG (2004) Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation. Opt Lett 29(15):1766–1768PubMedCrossRefGoogle Scholar
  63. 63.
    Cenic A, Nabavi DG, Craen RA, Gelb AW, Lee TY (1999) Dynamic CT measurement of cerebral blood flow: a validation study. AJNR Am J Neuroradiol 20(1):63–73PubMedGoogle Scholar
  64. 64.
    Scremin OU, Sonnenschein RR, Rubinstein EH (1982) Cerebrovascular anatomy and blood flow measurements in the rabbit. J Cereb Blood Flow Metab 2(1):55–66PubMedCrossRefGoogle Scholar
  65. 65.
    Tichauer KM, Hadway JA, Lee T-Y, St Lawrence K, Lawrence KS (2006) Measurement of cerebral oxidative metabolism with near-infrared spectroscopy: a validation study. J Cereb Blood Flow Metab 26(5):722–730PubMedCrossRefGoogle Scholar
  66. 66.
    Tichauer KM, Brown DW, Hadway J, Lee T-Y, St Lawrence K (2006) Near-infrared spectroscopy measurements of cerebral blood flow and oxygen consumption following hypoxia-ischemia in newborn piglets. J Appl Physiol 100(3):850–857PubMedCrossRefGoogle Scholar
  67. 67.
    Greisen G, Leung T, Wolf M (2011) Has the time come to use near-infrared spectroscopy as a routine clinical tool in preterm infants undergoing intensive care? Philos Trans A Math Phys Eng Sci 369(1955):4440–4451PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Ballabh P (2010) NIH public access. Pediatr Res 67(1):1–8PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Patel J, Roberts I, Azzopardi D, Hamilton P, Edwards AD (2000) Randomized double-blind controlled trial comparing the effects of ibuprofen with indomethacin on cerebral hemodynamics in preterm infants with patent ductus arteriosus. Pediatr Res 47(1):36–42PubMedCrossRefGoogle Scholar
  70. 70.
    Lemmers PMA, Toet MC, van Bel F (2008) Impact of patent ductus arteriosus and subsequent therapy with indomethacin on cerebral oxygenation in preterm infants. Pediatrics 121(1):142–147PubMedCrossRefGoogle Scholar
  71. 71.
    Garner RS, Miller C, Burchfield DJ (2012) Prophylactic indomethacin infusion increases fractional cerebral oxygen extraction in ELBW neonates. J Perinatol 32(9):695–698PubMedCrossRefGoogle Scholar
  72. 72.
    Diop M, Elliott JT, Tichauer KM, Lee T-Y, St Lawrence K (2009) A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets. Rev Sci Instrum 80(5):054302PubMedCrossRefGoogle Scholar
  73. 73.
    Arora R, Ridha M, Lee DSC, Elliott J, Rosenberg HC, Diop M, Lee T-Y, St Lawrence K (2013) Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus. Pediatr Res 73(6):713–718PubMedCrossRefGoogle Scholar
  74. 74.
    Greisen G (1986) Cerebral blood flow in preterm infants during the first week of life. Acta Paediatr Scand 75(1):43–51PubMedCrossRefGoogle Scholar
  75. 75.
    Elwell CE, Henty JR, Leung TS, Austin T, Meek JH, Delpy DT, Wyatt JS (2005) Measurement of CMRO2 in neonates undergoing intensive care using near infrared spectroscopy. Adv Exp Med Biol 566:263–268PubMedCrossRefGoogle Scholar
  76. 76.
    Schmidt B, Davis P, Moddemann D, Ohlsson A, Roberts RS, Saigal S, Solimano A, Vincer M, Wright LL (2001) Long-term effects of indomethacin prophylaxis in extremely-low-birth-weight infants. N Engl J Med 344(26):1966–1972PubMedCrossRefGoogle Scholar
  77. 77.
    Ergin A, Wang M, Zhang JY, Bruce JN, Fine RL, Bigio IJ, Joshi S (2012) The feasibility of real-time in vivo optical detection of blood–brain barrier disruption with indocyanine green. J Neurooncol 106(3):551–560PubMedCrossRefGoogle Scholar
  78. 78.
    Garski TR, Staller BJ, Hepner G, Banka VS, Finney RA (1978) Adverse reactions after administration of indocyanine green. JAMA 240(7):635PubMedCrossRefGoogle Scholar
  79. 79.
    Hope-Ross M, Yannuzzi LA, Gragoudas ES, Guyer DR, Slakter JS, Sorenson JA, Krupsky S, Orlock DA, Puliafito CA (1994) Adverse reactions due to indocyanine green. Ophthalmology 101(3):529–533PubMedCrossRefGoogle Scholar
  80. 80.
    Mintun M, Raichle ME, Martin WR, Herscovitch P (1984) Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med 25(2):177–187PubMedGoogle Scholar
  81. 81.
    Watzman HM, Kurth CD, Montenegro LM, Rome J, Steven JM, Nicolson SC (2000) Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiology 93(4):947–953PubMedCrossRefGoogle Scholar
  82. 82.
    Tichauer KM, Elliott JT, Hadway JA, Lee DS, Lee T-Y, St Lawrence K (2010) Using near-infrared spectroscopy to measure cerebral metabolic rate of oxygen under multiple levels of arterial oxygenation in piglets. J Appl Physiol 109(3):878–885PubMedCrossRefGoogle Scholar
  83. 83.
    Wolf M, Duc G, Keel M, Niederer P, von Siebenthal K, Bucher HU (1997) Continuous noninvasive measurement of cerebral arterial and venous oxygen saturation at the bedside in mechanically ventilated neonates. Crit Care Med 25(9):1579–1582PubMedCrossRefGoogle Scholar
  84. 84.
    Gora F, Shinde S, Elwell CE, Goldstone JC, Cope M, Delpy DT, Smith M (2002) Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study. J Neurosurg Anesthesiol 14(3):218–222PubMedCrossRefGoogle Scholar
  85. 85.
    Schytz HW, Wienecke T, Jensen LT, Selb J, Boas D a, Ashina M (2009) Changes in cerebral blood flow after acetazolamide: an experimental study comparing near-infrared spectroscopy and SPECT. Eur J Neurol 16(4):461–467PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Owen-Reece H, Elwell CE, Harkness W, Goldstone J, Delpy DT, Wyatt JS, Smith M (1996) Use of near infrared spectroscopy to estimate cerebral blood flow in conscious and anaesthetized adult subjects. Br J Anaesth 76(1):43–48PubMedCrossRefGoogle Scholar
  87. 87.
    Elliott JT, Diop M, Tichauer KM, Lee T-Y, StLawrence K (2010) Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy. J Biomed Opt 15(3):037014PubMedCrossRefGoogle Scholar
  88. 88.
    Elliott JT, Milej D, Gerega A, Weigl W, Diop M, Morrison LB, Lee T-Y, Liebert A, St Lawrence K (2013) Variance of time-of-flight distribution is sensitive to cerebral blood flow as demonstrated by ICG bolus-tracking measurements in adult pigs. Biomed Opt Express 4(2):206–218PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kohl-Bareis M, Obrig H, Steinbrink J, Malak J, Uludag K, Villringer A (2002) Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals. J Biomed Opt 7(3):464–470PubMedCrossRefGoogle Scholar
  90. 90.
    Habermehl C, Schmitz CH, Steinbrink J (2011) Contrast enhanced high-resolution diffuse optical tomography of the human brain using ICG. Opt Express 19(19):18636–18644PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Elliott JT, Diop M, Lee T-Y, Lawrence KS (2012) Model-independent dynamic constraint to improve the optical reconstruction of regional kinetic parameters. Opt Lett 37(13):2571–2573PubMedCrossRefGoogle Scholar
  92. 92.
    Liebert A, Wabnitz H, Steinbrink J, Obrig H, Mo M (2004) Absorption changes from moments of distribution of times of flight of photons. Appl Opt 43(15):3037–3047PubMedCrossRefGoogle Scholar
  93. 93.
    Hallacoglu B, Sassaroli A, Fantini S (2013) Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue. PLoS One 8(5):e64095PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Keith St. Lawrence
    • 1
    Email author
  • Kyle Verdecchia
    • 1
  • Jonathan Elliott
    • 2
  • Mamadou Diop
    • 1
  1. 1.Imaging DivisionLawson Health Research InstituteLondonCanada
  2. 2.Thayer School of Engineering at Dartmouth CollegeHanoverUSA

Personalised recommendations