Advertisement

A Chip Off the Old Block: The Brain Slice as a Model for Metabolic Studies of Brain Compartmentation and Neuropharmacology

  • Caroline RaeEmail author
  • Vladimir J. Balcar
Protocol
Part of the Neuromethods book series (NM, volume 90)

Abstract

The cortical brain tissue slice is a reductionist model system of the brain, representing interacting, living cells which operate very similarly to intact brain tissue. Metabolic rates are only slightly slower than in heavily anaesthetised brain, and complications introduced by the blood–brain barrier and peripheral metabolism are removed. In this work, we describe how to make and maintain brain tissue slices in biochemical studies, how to use the technique to conduct neurochemical experiments and how to extract metabolic data using NMR spectroscopy. Finally, we describe the use of metabolomics multivariate statistical approaches for obtaining data-driven outcomes in neuropharmacological research.

Key words

Cortical brain tissue slices NMR spectroscopy Metabolomics multivariate statistical approaches Neuropharmacology 

References

  1. 1.
    Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, Leybaert L, Molnar Z, O'Donnell ME, Povlishock JT, Saunders NR, Sharp F, Stanimirovic D, Watts RJ, Drewes LR (2011) Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 12(3):169–182PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Shinohara Y, Hirase H, Watanabe M, Itakura M, Takahashi M, Shigemoto R (2008) Left-right asymmetry of the hippocampal synapses with differential subunit allocation of glutamate receptors. Proc Natl Acad Sci U S A 105(49):19498–19503PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    McIlwain H, Buddle HL (1953) Techniques in tissue metabolism. 1. A mechanical chopper. Biochem J 53(3):412PubMedPubMedCentralGoogle Scholar
  5. 5.
    Newman GC, Hospod FE, Schissel SL (1991) Ischemic brain slice glucose utilization: effects of slice thickness, acidosis and K+. J Cereb Blood Flow Metab 11(3):398–406PubMedCrossRefGoogle Scholar
  6. 6.
    Brahma B, Forman RE, Stewart EE, Nicholson C, Rice ME (2000) Ascorbate inhibits edema in brain slices. J Neurochem 74(3):1263–1270PubMedCrossRefGoogle Scholar
  7. 7.
    Rumsey SC, Kwon O, Xu GW, Burant CF, Simpson I, Levine M (1997) Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J Biol Chem 272(30):18982–18989PubMedCrossRefGoogle Scholar
  8. 8.
    Castro MA, Beltran FA, Brauchi S, Concha II (2009) A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid. J Neurochem 110(2):423–440PubMedCrossRefGoogle Scholar
  9. 9.
    An JH, Su Y, Radman T, Bikson M (2008) Effects of glucose and glutamine concentration in the formulation of the artificial cerebrospinal fluid (ACSF). Brain Res 1218:77–86PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Rae C, Hansen JT, Bubb WA, Bröer S, Bröer A (2005) Alanine transport, metabolism and cycling in the brain. Proc Int Soc Magn Reson Med 2005:2481Google Scholar
  11. 11.
    Rae C, Hare N, Bubb WA, McEwan SR, Bröer A, McQuillan JA, Balcar VJ, Conigrave AD, Bröer S (2003) Inhibition of glutamine transport depletes glutamate and GABA neurotransmitter pools: further evidence for metabolic compartmentation. J Neurochem 85:503–514PubMedCrossRefGoogle Scholar
  12. 12.
    Griffin JL, Rae C, Radda GK, Matthews PM (1999) Lactate-induced inhibition of glucose catabolism in guinea pig cortical brain slices. Neurochem Int 35(5):405–409PubMedCrossRefGoogle Scholar
  13. 13.
    McIlwain H, Bachelard H (1985) Biochemistry and the central nervous system. Churchill Livingstone, Edinburgh, pp 7–29Google Scholar
  14. 14.
    Cox DWG, Morris PG, Feeney F, Bachelard HS (1983) 31P MRS studies on cerebral energy metabolism under conditions of hypoglycaemia and hypoxia in vitro. Biochem J 212:365–370PubMedPubMedCentralGoogle Scholar
  15. 15.
    Badar-Goffer R, Bachelard H, Morris P (1990) Cerebral metabolism of acetate and glucose studied by 13C NMR spectroscopy. Biochem J 266:133–139PubMedPubMedCentralGoogle Scholar
  16. 16.
    Ben-Joseph O, Bader-Gofer RS, Morris PG, Bachelard HS (1993) Glycerol-3-phosphate and lactate as indicators of cytoplasmic redox state in severe and mild hypoxia respectively; a 13C and 31P NMR study. Biochem J 291:915–919Google Scholar
  17. 17.
    Nasrallah F, Garner B, Ball GE, Rae C (2008) Modulation of brain metabolism by very low concentrations of the commonly used drug delivery vehicle dimethyl sulfoxide (DMSO). J Neurosci Res 86:208–214PubMedCrossRefGoogle Scholar
  18. 18.
    McIlwain H (1953) Substances which support respiration and metabolic response to electrical impulses in human cerebral tissues. J Neurol Neurosurg Psychiatry 16:257–266PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    McIlwain H (1951) Metabolic response in vitro to electrical stimulation of sections of mammalian brain. Biochem J 49(3):382–393PubMedPubMedCentralGoogle Scholar
  20. 20.
    Bollard BM, McIlwain H (1957) Metabolism and metabolic response to electrical pulses in white matter from the central nervous system. Biochem J 66(4):651–655PubMedPubMedCentralGoogle Scholar
  21. 21.
    McIlwain H (1953) Glucose level, metabolism and response to electrical impulses in cerebral tissues from man and laboratory animals. Biochem J 55:618–624PubMedPubMedCentralGoogle Scholar
  22. 22.
    Waagepetersen HS, Sonnewald U, Larsson OM, Schousboe A (2000) A possible role of alanine for ammonia transfer between astrocytes and glutamatergic neurons. J Neurochem 75:471–479PubMedCrossRefGoogle Scholar
  23. 23.
    Griffin JL, Keun H, Moskau D, Rae C, Nicholson JK (2003) Compartmentation of metabolism probed by [2-13C]alanine: Improved 13C NMR sensitivity using a CryoProbe detects evidence of a glial metabolon. Neurochem Int 42:93–99PubMedCrossRefGoogle Scholar
  24. 24.
    Griffin JL, Rae C, Dixon RM, Radda GK, Matthews PM (1998) Excitatory amino acid synthesis in hypoxic brain slices: does alanine act as a substrate for glutamate production in hypoxia? J Neurochem 71:2477–2486PubMedCrossRefGoogle Scholar
  25. 25.
    Bröer S, Bröer A, Hansen JT, Bubb WA, Balcar VJ, Nasrallah FA, Garner B, Rae C (2007) Alanine metabolism, transport and cycling in the brain. J Neurochem 102:1758–1770PubMedCrossRefGoogle Scholar
  26. 26.
    Brand A, Richter-Landsberg C, Leibfritz D (1997) Metabolism of acetate in rat brain neurons, astrocytes and cocultures: metabolic interactions between neurons and glia cells, monitored by NMR spectroscopy. Cell Mol Biol 43:645–657PubMedGoogle Scholar
  27. 27.
    Carroll PT (1997) Evidence to suggest that extracellular acetate is accumulated by rat hippocampal cholinergic nerve terminals for acetylcholine formation and release. Brain Res 753(1):47–55PubMedCrossRefGoogle Scholar
  28. 28.
    Chapa F, Cruz F, Garcia-Martin ML, Garcia-Espinosa MA, Cerdan S (1999) Metabolism of (1-13C) glucose and (2-13C, 2-2H3) acetate in the neuronal and glial compartments of the adult rat brain as detected by {13C, 2H} NMR spectroscopy. Wierzba, Pergamon-Elsevier Science Ltd, pp 217–228Google Scholar
  29. 29.
    Waniewski R, Martin D (1998) Preferential utilization of acetate by astrocytes is attributable to transport. J Neurosci 18:5225–5233PubMedGoogle Scholar
  30. 30.
    Rae C, Fekete AD, Kashem MA, Nasrallah FA, Bröer S (2012) Metabolism, compartmentation, transport and production of acetate in the cortical brain tissue slice. Neurochem Res 37:2541–2553PubMedCrossRefGoogle Scholar
  31. 31.
    Voehler MW, Collier G, Young JK, Stone MP, Germann MW (2006) Performance of cryogenic probes as a function of ionic strength and sample tube geometry. J Magn Reson 183(1):102–109PubMedCrossRefGoogle Scholar
  32. 32.
    Gadian DG, Robinson FNH (1979) Radiofrequency losses in NMR experiments on electrically conducting samples. J Magn Reson 34(2):449–455Google Scholar
  33. 33.
    Le Belle JE, Harris NG, Williams SR, Bhakoo KK (2002) A comparison of cell and tissue extraction techniques using high-resolution 1H NMR spectroscopy. NMR Biomed 15:37–44PubMedCrossRefGoogle Scholar
  34. 34.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  35. 35.
    Kupce E, Freeman R (1995) Adiabatic pulses for wideband inversion and broadband decoupling. J Magn Reson A 115:273–276CrossRefGoogle Scholar
  36. 36.
    Wagner A, Fell DA (2001) The small world inside large metabolic networks. Proc R Soc B Biol Sci 268(1478):1803–1810CrossRefGoogle Scholar
  37. 37.
    Goodacre R, Vaidyanathan S, Dunn WB, Gharrigan GG, Kell DB (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 22:245–252PubMedCrossRefGoogle Scholar
  38. 38.
    Nicholson JK, Lindon JC, Holmes E (1999) 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29(11):1181–1189PubMedCrossRefGoogle Scholar
  39. 39.
    Rae C, Lawrance ML, Dias LS, Provis T, Bubb WA, Balcar VJ (2000) Strategies for studies of potentially neurotoxic mechanisms involving deficient transport of L-glutamate: antisense knockout in rat brain in vivo and changes in the neurotransmitter metabolism following inhibition of glutamate transport in guinea pigs brain slices. Brain Res Bull 53:373–381PubMedCrossRefGoogle Scholar
  40. 40.
    Fonville JM, Richards SE, Barton RH, Boulange CL, Ebbels TMD, Nicholson JK, Holmes E, Dumas ME (2010) The evolution of partial least squares models and related chemometric approaches in metabonomics and metabolic phenotyping. J Chemometr 24(11–12):636–649CrossRefGoogle Scholar
  41. 41.
    Worley B, Powers R (2013) Multivariate analysis in metabolomics. Curr Metabolomics 1(1):92–107Google Scholar
  42. 42.
    Ellinger JJ, Chylla RA, Ulrich EL, Markley JL (2013) Databases and software for NMR-based metabolomics. Curr Metabolomics 1(1):28–40Google Scholar
  43. 43.
    Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1–3):37–52CrossRefGoogle Scholar
  44. 44.
    Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Wikstrom C, Wold S (2006) Multi- and megavariate data analysis, part 1 basic principles and applications. Umetrics AB, UmeaGoogle Scholar
  45. 45.
    Coomans D, Broeckaert I, Derde MP, Tassin A, Massart DL, Wold S (1984) Use of a microcomputer for the definition of multivariate confidence regions in medical diagnosis based on clinical laboratory profiles. Comput Biomed Res 17(1):1–14PubMedCrossRefGoogle Scholar
  46. 46.
    Nasrallah F, Griffin JL, Balcar VJ, Rae C (2009) Understanding your inhibitions. Effects of GABA and GABAA receptors on brain cortical metabolism. J Neurochem 108:57–71PubMedCrossRefGoogle Scholar
  47. 47.
    Nasrallah FA, Balcar VJ, Rae C (2010) A metabonomic study of inhibition of GABA uptake in the cerebral cortex. Metabolomics 6:67–77CrossRefGoogle Scholar
  48. 48.
    Rae C, Nasrallah FA, Griffin JL, Balcar VJ (2009) Now I know my ABC. A systems neurochemistry and functional metabolomic approach to understanding the GABAergic system. J Neurochem 109(Suppl 1):109–116PubMedCrossRefGoogle Scholar
  49. 49.
    Nasrallah F, Griffin JL, Balcar VJ, Rae C (2007) Understanding your inhibitions. Modulation of brain cortical metabolism by GABA-B receptors. J Cereb Blood Flow Metab 27:1510–1520PubMedCrossRefGoogle Scholar
  50. 50.
    Nasrallah FA, Maher AD, Hanrahan JR, Balcar VJ, Rae CD (2010) γ-Hydroxybutyrate and the GABAergic footprint. A metabolomic approach to unpicking the actions of GHB. J Neurochem 115:58–67PubMedCrossRefGoogle Scholar
  51. 51.
    Absalom N, Eghorn LF, Villumsen IS, Karim N, Bay T, Olsen JV, Knudsen GM, Brauner-Osborne H, Frolund B, Clausen RP, Chebib M, Wellendorph P (2012) Alpha 4 beta delta GABA(A) receptors are high-affinity targets for gamma-hydroxybutyric acid (GHB). Proc Natl Acad Sci U S A 109(33):13404–13409PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Nasrallah FA, Balcar VJ, Rae CD (2011) Activity dependent GABA release controls brain cortical tissue slice metabolism. J Neurosci Res 89:1935–1945PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Neuroscience Research AustraliaRandwickAustralia
  2. 2.The University of New South WalesSydneyAustralia
  3. 3.Discipline of Anatomy and Bosch Institute, School of Medical Sciences, Sydney Medical SchoolThe University of SydneySydneyAustralia

Personalised recommendations