Skip to main content

Noncontiguous SCHEMA Protein Recombination

  • Protocol
  • First Online:
Directed Evolution Library Creation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1179))

Abstract

SCHEMA is a method of designing protein recombination libraries that contain a large fraction of functional proteins with a high degree of mutational diversity. In the previous chapter, we illustrated the method for designing libraries by swapping contiguous sequence elements. Here, we introduce the NCR (“noncontiguous recombination”) algorithm to identify optimal designs for swapping elements that are contiguous in the 3-D structure but not necessarily in the primary sequence. To exemplify the method, NCR is used to recombine three fungal cellobiohydrolases (CBH1s) to produce a library containing more than 500,000 novel chimeric sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Voigt CA, Martinez C, Wang Z-G, Mayo SL, Arnold FH (2002) Protein building blocks preserved by recombination. Nat Struct Biol 9:553–558

    CAS  PubMed  Google Scholar 

  2. Meyer M, Hochrein L, Arnold FH (2006) Structure-guided SCHEMA recombination of distantly related β-lactamases. Protein Eng Des Sel 19:563–570

    Article  CAS  PubMed  Google Scholar 

  3. Endelman J, Silberg J, Wang Z, Arnold FH (2004) Site-directed protein recombination as a shortest-path problem. Protein Eng Des Sel 17:589–594

    Article  CAS  PubMed  Google Scholar 

  4. Smith MA, Romero PA, Wu T, Brustad EM, Arnold FH (2013) Chimeragenesis of distantly-related proteins by noncontiguous recombination. Protein Sci 22:231–238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Smith MA, Bedbrook CN, Wu T, Arnold FH (2013) Hypocrea jecorina cellobiohydrolase I stabilizing mutations identified using noncontiguous recombination. ACS Synth Biol. doi:10.1021/sb400010m

    PubMed Central  Google Scholar 

  6. Heinzelman P, Romero PA, Arnold FH (2013) Efficient sampling of SCHEMA chimera families for identification of useful sequence elements. In: Keasling A (ed) Methods in enzymology: methods in protein design. Elsevier Ltd, Oxford, UK

    Google Scholar 

  7. Pei J, Kim B-H, Grishin NV (2008) PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res 36:2295–2300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Eswar N, Webb B, Marti-Renom MA, Madhusudhan M, Eramian D, Shen MY, Pieper U, Sali A (2007) Comparative protein structure modeling using Modeller. Curr Protoc Protein Sci 2:15–32

    Google Scholar 

  9. Li Y, Drummond DA, Sawayama AM, Snow CD, Bloom JD, Arnold FH (2007) A diverse family of thermostable cytochrome P450s created by recombination of stabilizing fragments. Nat Biotechnol 25:1051–1056

    Article  CAS  PubMed  Google Scholar 

  10. Krause A (2010) SFO: a toolbox for submodular function optimization. J Mach Learn Res 11:1141–1144

    Google Scholar 

  11. Romero P, Stone E, Lamb C, Chantranupong L, Krause A, Miklos A, Hughes R, Fechtel B, Ellington AD, Arnold FH, Georgiou G (2012) SCHEMA-designed variants of human Arginase I and II reveal sequence elements important to stability and catalysis. ACS Synth Biol 1:221–228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Heinzelman P, Komor R, Kanaan A, Romero PA, Yu X, Mohler S, Snow C, Arnold FH (2010) Efficient screening of fungal cellobiohydrolase class I enzymes for thermostabilizing sequence blocks by SCHEMA structure-guided recombination. Protein Eng Des Sel 23:871–880

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from the Institute for Collaborative Biotechnologies through grant W911NF-09-D-0001 from the US Army Research Office and the National Central University, Taiwan, through a Cooperative Agreement for Energy Research Collaboration. M.A.S. is supported by a Resnick Sustainability Institute fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances H. Arnold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Smith, M.A., Arnold, F.H. (2014). Noncontiguous SCHEMA Protein Recombination. In: Gillam, E., Copp, J., Ackerley, D. (eds) Directed Evolution Library Creation. Methods in Molecular Biology, vol 1179. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1053-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1053-3_23

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1052-6

  • Online ISBN: 978-1-4939-1053-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics