Skip to main content

Generating Random Circular Permutation Libraries

  • Protocol
  • First Online:
Directed Evolution Library Creation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1179))

Abstract

Protein engineering by random circular permutation is an effective tool for tailoring protein topology with potential functional benefits including improved catalytic activity. This method involves covalently connecting the native protein termini with a peptide linker and cleaving a peptide bond elsewhere in the polypeptide sequence. Termini relocation can impact protein ternary and quaternary structure and translate into functional enhancements due to changes in protein conformation and flexibility. As the effects of new termini in specific protein locations are difficult to predict, the preparation of a library constituting all possible permutation sites is an effective search strategy for identifying variants with novel properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bornscheuer UT et al (2012) Engineering the third wave of biocatalysis. Nature 485:185–194

    Article  CAS  PubMed  Google Scholar 

  2. Ha JH, Loh SN (2012) Protein conformational switches: from nature to design. Chemistry 18:7984–7999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Omenetto FG, Kaplan DL (2010) New opportunities for an ancient material. Science 329:528–531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Boyle AL, Woolfson DN (2011) De novo designed peptides for biological applications. Chem Soc Rev 40:4295–4306

    Article  CAS  PubMed  Google Scholar 

  5. Lutz S, Bornscheuer UT (2009) Protein engineering handbook. Wiley-VCH, Weinheim

    Google Scholar 

  6. Arnold FH, Georgiou G (2003) Directed evolution library creation: methods and protocols. Humana Press, Totowa, NJ

    Book  Google Scholar 

  7. Luger K et al (1989) Correct folding of circularly permuted variants of a beta alpha barrel enzyme in vivo. Science 243:206–210

    Article  CAS  PubMed  Google Scholar 

  8. Jaenicke R (1991) Protein folding—local structures, domains, subunits, and assemblies. Biochemistry 30:3147–3161

    Article  CAS  PubMed  Google Scholar 

  9. Pan T, Gutell RR, Uhlenbeck OC (1991) Folding of circularly permuted transfer-RNAs. Science 254:1361–1364

    Article  CAS  PubMed  Google Scholar 

  10. Ivarsson Y et al (2008) Folding and misfolding in a naturally occurring circularly permuted PDZ domain. J Biol Chem 283:8954–8960

    Article  CAS  PubMed  Google Scholar 

  11. Lindberg M, Tangrot J, Oliveberg M (2002) Complete change of the protein folding transition state upon circular permutation. Nat Struct Biol 9:818–822

    CAS  PubMed  Google Scholar 

  12. Hahn M et al (1994) Native-like in vivo folding of a circularly permuted jellyroll protein shown by crystal structure analysis. Proc Natl Acad Sci U S A 91:10417–10421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Baird GS, Zacharias DA, Tsien RY (1999) Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci U S A 96:11241–11246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ostermeier M (2008) Engineering allosteric protein switches by domain insertion. Protein Eng Des Sel 18:359–364

    Article  Google Scholar 

  15. Graf R, Schachman HK (1996) Random circular permutation of genes and expressed polypeptide chains: application of the method to the catalytic chains of aspartate transcarbamoylase. Proc Natl Acad Sci U S A 93:11591–11596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hennecke J, Sebbel P, Glockshuber R (1999) Random circular permutation of DsbA reveals segments that are essential for protein folding and stability. J Mol Biol 286:1197–1215

    Article  CAS  PubMed  Google Scholar 

  17. Iwakura M et al (2000) Systematic circular permutation of an entire protein reveals essential folding elements. Nat Struct Biol 7:580–585

    Article  CAS  PubMed  Google Scholar 

  18. Guntas G, Kanwar M, Ostermeier M (2012) Circular permutation in the Omega-loop of TEM-1 beta-lactamase results in improved activity and altered substrate specificity. PLoS One 7:e35998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Qian Z, Lutz S (2005) Improving the catalytic activity of Candida antarctica lipase B by circular permutation. J Am Chem Soc 127:13466–13467

    Article  CAS  PubMed  Google Scholar 

  20. Qian Z et al (2009) Structural redesign of lipase B from Candida antarctica by circular permutation and incremental truncation. J Mol Biol 393:191–201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Reitinger S et al (2010) Circular permutation of Bacillus circulans xylanase: a kinetic and structural study. Biochemistry 49:2464–2474

    Article  CAS  PubMed  Google Scholar 

  22. Yu Y, Lutz S (2011) Circular permutation: a different way to engineer enzyme structure and function. Trends Biotechnol 29:18–25

    Article  CAS  PubMed  Google Scholar 

  23. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. CSH Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  24. Daugherty AB, Govindarajan S, Lutz S (2013) Improved biocatalysts from a synthetic circular permutation library of the flavin-dependent oxidoreductase old yellow enzyme. J Am Chem Soc 135:14425–14432

    Article  CAS  PubMed  Google Scholar 

  25. Arnold FH (2006) Fancy footwork in the sequence space shuffle. Nat Biotechnol 24:328–330

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors like to thank the members of the Lutz Lab for many helpful comments and suggestions on the manuscript. This work was in part supported by funds from the US National Science Foundation (CBET 0730312 & 1159434).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Lutz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lutz, S., Daugherty, A.B., Yu, Y., Qian, Z. (2014). Generating Random Circular Permutation Libraries. In: Gillam, E., Copp, J., Ackerley, D. (eds) Directed Evolution Library Creation. Methods in Molecular Biology, vol 1179. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1053-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1053-3_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1052-6

  • Online ISBN: 978-1-4939-1053-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics