Skip to main content

Transposon-Based Approaches for Generating Novel Molecular Diversity During Directed Evolution

  • Protocol
  • First Online:
Directed Evolution Library Creation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1179))

Abstract

This chapter introduces a set of transposon-based methods that were developed to sample trinucleotide deletion, trinucleotide replacement, and domain insertion. Each approach has a common initial step that utilizes an engineered version of the Mu transposon called MuDel. The inherent low sequence specificity of MuDel results in its random insertion into target DNA during in vitro transposition. Removal of the transposon using a type IIS restriction endonuclease generates blunt-end random breaks at a frequency of one per target gene and the concomitant loss of 3 bp. Self-ligation or insertion of another DNA cassette results in the sampling of trinucleotide deletion or trinucleotide substitution/domain insertion, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cobb RE, Si T, Zhao H (2012) Directed evolution: an evolving and enabling synthetic biology tool. Curr Opin Chem Biol 16:285–291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Jackel C, Kast P, Hilvert D (2008) Protein design by directed evolution. Annu Rev Biophys 37:153–173

    Article  CAS  PubMed  Google Scholar 

  3. Lutz S, Patrick WM (2004) Novel methods for directed evolution of enzymes: quality, not quantity. Curr Opin Biotechnol 15:291–297

    Article  CAS  PubMed  Google Scholar 

  4. Neylon C (2004) Chemical and biochemical strategies for the randomization of protein encoding DNA sequences: library construction methods for directed evolution. Nucleic Acids Res 32:1448–1459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Brustad EM, Arnold FH (2011) Optimizing non-natural protein function with directed evolution. Curr Opin Chem Biol 15:201–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Koide S (2009) Generation of new protein functions by nonhomologous combinations and rearrangements of domains and modules. Curr Opin Biotechnol 20:398–404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Chothia C, Gough J, Vogel C, Teichmann SA (2003) Evolution of the protein repertoire. Science 300:1701–1703

    Article  CAS  PubMed  Google Scholar 

  8. Taylor MS, Ponting CP, Copley RR (2004) Occurrence and consequences of coding sequence insertions and deletions in Mammalian genomes. Genome Res 14:555–566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Shortle D, Sondek J (1995) The emerging role of insertions and deletions in protein engineering. Curr Opin Biotechnol 6:387–393

    Article  CAS  PubMed  Google Scholar 

  10. Jones DD (2005) Triplet nucleotide removal at random positions in a target gene: the tolerance of TEM-1 β-lactamase to an amino acid deletion. Nucleic Acids Res 33:e80

    Article  PubMed Central  PubMed  Google Scholar 

  11. Simm AM, Baldwin AJ, Busse K, Jones DD (2007) Investigating protein structural plasticity by surveying the consequence of an amino acid deletion from TEM-1 β-lactamase. FEBS Lett 581:3904–3908

    Article  CAS  PubMed  Google Scholar 

  12. Baldwin AJ, Arpino JA, Edwards WR, Tippmann EM, Jones DD (2009) Expanded chemical diversity sampling through whole protein evolution. Mol Biosyst 5:764–766

    Article  CAS  PubMed  Google Scholar 

  13. Baldwin AJ, Busse K, Simm AM, Jones DD (2008) Expanded molecular diversity generation during directed evolution by trinucleotide exchange (TriNEx). Nucleic Acids Res 36:e77

    Article  PubMed Central  PubMed  Google Scholar 

  14. Arpino JA, Czapinska H, Piasecka A, Edwards WR, Barker P, Gajda MJ, Bochtler M, Jones DD (2012) Structural basis for efficient chromophore communication and energy transfer in a constructed didomain protein scaffold. J Am Chem Soc 134:13632–13640

    Article  CAS  PubMed  Google Scholar 

  15. Edwards WR, Busse K, Allemann RK, Jones DD (2008) Linking the functions of unrelated proteins using a novel directed evolution domain insertion method. Nucleic Acids Res 36:e78. doi:10.1093/nar/gkn363

    Article  PubMed Central  PubMed  Google Scholar 

  16. Edwards WR, Williams AJ, Morris JL, Baldwin AJ, Allemann RK, Jones DD (2010) Regulation of β-lactamase activity by remote binding of haem: functional coupling of unrelated proteins through domain insertion. Biochemistry 49:6541–6549

    Article  CAS  PubMed  Google Scholar 

  17. Haapa S, Taira S, Heikkinen E, Savilahti H (1999) An efficient and accurate integration of mini-Mu transposons in vitro: a general methodology for functional genetic analysis and molecular biology applications. Nucleic Acids Res 27:2777–2784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Fastrez J (2009) Engineering allosteric regulation into biological catalysts. Chembiochem 10:2824–2835

    Article  CAS  PubMed  Google Scholar 

  19. Ferraz RM, Vera A, Aris A, Villaverde A (2006) Insertional protein engineering for analytical molecular sensing. Microb Cell Fact 5:15

    Article  PubMed Central  PubMed  Google Scholar 

  20. Ostermeier M (2005) Engineering allosteric protein switches by domain insertion. Protein Eng Des Sel 18:359–364

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the BBSRC (BB/H003746, BB/E001084, BB/FOF/263, BB/E007384), MRC DPFS (G0900868), Merck KGaA, Wellcome (084542/Z/07/Z), and Nuffield Foundation for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Dafydd Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jones, D.D., Arpino, J.A.J., Baldwin, A.J., Edmundson, M.C. (2014). Transposon-Based Approaches for Generating Novel Molecular Diversity During Directed Evolution. In: Gillam, E., Copp, J., Ackerley, D. (eds) Directed Evolution Library Creation. Methods in Molecular Biology, vol 1179. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1053-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1053-3_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1052-6

  • Online ISBN: 978-1-4939-1053-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics