Skip to main content

Quantifying Electrical Interactions Between Cardiomyocytes and Other Cells in Micropatterned Cell Pairs

  • Protocol
  • First Online:
Cardiac Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1181))

Abstract

Micropatterning is a powerful technique to control cell shape and position on a culture substrate. In this chapter, we describe the method to reproducibly create large numbers of micropatterned heterotypic cell pairs with defined size, shape, and length of cell–cell contact. These cell pairs can be utilized in patch clamp recordings to quantify electrical interactions between cardiomyocytes and non-cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Menasche P, Hagege AA, Vilquin JT et al (2003) Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 41(7):1078–1083

    Article  Google Scholar 

  2. Assmus B, Schachinger V, Teupe C et al (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106(24):3009–3017

    Article  Google Scholar 

  3. Chugh AR, Beache GM, Loughran JH et al (2012) Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation 126(11 Suppl 1):S54–S64. doi:10.1161/circula-tionaha.112.092627

    Article  CAS  Google Scholar 

  4. Laflamme MA, Chen KY, Naumova AV et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25(9):1015–1024. doi:10.1038/nbt1327

    Article  CAS  Google Scholar 

  5. Cho HC, Marban E (2010) Biological therapies for cardiac arrhythmias: can genes and cells replace drugs and devices? Circ Res 106(4):674–685. doi:10.1161/CIRCRESAHA.109.212936

    Article  CAS  Google Scholar 

  6. Gepstein L (2010) Cell and gene therapy strategies for the treatment of postmyocardial infarction ventricular arrhythmias. Ann N Y Acad Sci 1188:32–38. doi:10.1111/j.1749-6632.2009.05080.x

    Article  Google Scholar 

  7. Pedrotty DM, Klinger RY, Badie N et al (2008) Structural coupling of cardiomyocytes and noncardiomyocytes: quantitative comparisons using a novel micropatterned cell pair assay. Am J Physiol Heart Circ Physiol 295(1):H390–H400. doi:10.1152/ajpheart.91531.2007

    Article  CAS  Google Scholar 

  8. McSpadden LC, Nguyen H, Bursac N (2012) Size and ionic currents of unexcitable cells coupled to cardiomyocytes distinctly modulate cardiac action potential shape and pacemaking activity in micropatterned cell pairs. Circ Arrhythm Electrophysiol 5(4):821–830. doi:10.1161/CIRCEP.111.969329

    Article  Google Scholar 

  9. del Corsso C, Srinivas M, Urban-Maldonado M et al (2006) Transfection of mammalian cells with connexins and measurement of voltage sensitivity of their gap junctions. Nat Protoc 1(4):1799–1809. doi:10.1038/nprot.2006.266

    Article  Google Scholar 

  10. Bursac N, Parker KK, Iravanian S et al (2002) Cardiomyocyte cultures with controlled macroscopic anisotropy: a model for functional electrophysiological studies of cardiac muscle. Circ Res 91(12):e45–e54

    Article  CAS  Google Scholar 

  11. Klinger R, Bursac N (2008) Cardiac cell therapy in vitro: reproducible assays for comparing the efficacy of different donor cells. IEEE Eng Med Biol Mag 27(1):72–80. doi:10.1109/MEMB.2007.913849

    Article  Google Scholar 

  12. Pedrotty DM, Klinger RY, Kirkton RD et al (2009) Cardiac fibroblast paracrine factors alter impulse conduction and ion channel expression of neonatal rat cardiomyocytes. Cardiovasc Res 83(4):688–697. doi:10.1093/cvr/cvp164

    Article  CAS  Google Scholar 

  13. Mangi AA, Noiseux N, Kong D et al (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 9(9):1195–1201. doi:10.1038/nm912

    Article  CAS  Google Scholar 

  14. Taylor DA, Silvestry SC, Bishop SP et al (1997) Delivery of primary autologous skeletal myoblasts into rabbit heart by coronary infusion: a potential approach to myocardial repair. Proc Assoc Am Physicians 109(3):245–253

    CAS  Google Scholar 

  15. Liau B, Christoforou N, Leong KW et al (2011) Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function. Biomaterials 32(35):9180–9187. doi:10.1016/j.biomaterials.2011.08.050

    Article  CAS  Google Scholar 

  16. Christoforou N, Miller RA, Hill CM et al (2008) Mouse ES cell-derived cardiac precursor cells are multipotent and facilitate identification of novel cardiac genes. J Clin Invest 118(3):894–903. doi:10.1172/JCI33942

    CAS  Google Scholar 

  17. Kirkton RD, Bursac N (2011) Engineering biosynthetic excitable tissues from unexcitable cells for electrophysiological and cell therapy studies. Nat Commun 2:300. doi:10.1038/ncomms1302

    Article  Google Scholar 

  18. Badie N, Satterwhite L, Bursac N (2009) A method to replicate the microstructure of heart tissue in vitro using DTMRI-based cell micropatterning. Ann Biomed Eng 37(12):2510–2521. doi:10.1007/s10439-009-9815-x

    Article  Google Scholar 

  19. Hamill OP, Marty A, Neher E et al (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391(2):85–100

    Article  CAS  Google Scholar 

  20. Veenstra RD, Brink PR (1992) Patch-clamp analysis of gap junctional currents. In: Stevenson B, Paul DL, Gallin W (eds) Cell-cell interactions: a practical approach. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Robert Kirkton for reading of the manuscript. This work was supported by the National Heart, Lung, and Blood Institute of the NIH under Award Numbers R01-HL-104326 and R21-HL-106203. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenad Bursac Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nguyen, H., Badie, N., McSpadden, L., Pedrotty, D., Bursac, N. (2014). Quantifying Electrical Interactions Between Cardiomyocytes and Other Cells in Micropatterned Cell Pairs. In: Radisic, M., Black III, L. (eds) Cardiac Tissue Engineering. Methods in Molecular Biology, vol 1181. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1047-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1047-2_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1046-5

  • Online ISBN: 978-1-4939-1047-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics