Skip to main content

Optogenetic Control of Cardiomyocytes via Viral Delivery

  • Protocol
  • First Online:
Book cover Cardiac Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1181))

Abstract

Optogenetics is an emerging technology for the manipulation and control of excitable tissues, such as the brain and heart. As this technique requires the genetic modification of cells in order to inscribe light sensitivity, for cardiac applications, here we describe the process through which neonatal rat ventricular myocytes are virally infected in vitro with channelrhodopsin-2 (ChR2). We also describe in detail the procedure for quantitatively determining the optimal viral dosage, including instructions for patterning gene expression in multicellular cardiomyocyte preparations (cardiac syncytia) to simulate potential in vivo transgene distributions. Finally, we address optical actuation of ChR2-transduced cells and means to measure their functional response to light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boyden ES et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268

    Article  CAS  Google Scholar 

  2. Bernstein JG, Boyden ES (2011) Optogenetic tools for analyzing the neural circuits of behavior. Trends Cogn Sci 15(12):592–600

    Article  Google Scholar 

  3. Deisseroth K et al (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26(41):10380–10386

    Article  CAS  Google Scholar 

  4. Fenno L et al (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412

    Article  CAS  Google Scholar 

  5. Zhang F et al (2007) Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 8(8):577–581

    Article  CAS  Google Scholar 

  6. Airan RD et al (2007) High-speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science 317(5839):819–823

    Article  CAS  Google Scholar 

  7. Kim SY et al (2013) Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature 496(7444):219–223

    Article  CAS  Google Scholar 

  8. Britt JP, Bonci A (2013) Optogenetic interrogations of the neural circuits underlying addiction. Curr Opin Neurobiol 23:1–7

    Article  Google Scholar 

  9. Lobo MK et al (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330(6002):385–390

    Article  CAS  Google Scholar 

  10. Carter ME et al (2009) Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. J Neurosci 29(35):10939–10949

    Article  CAS  Google Scholar 

  11. Krook-Magnuson E et al (2013) On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat Commun 4:1376

    Article  Google Scholar 

  12. Tonnesen J et al (2009) Optogenetic control of epileptiform activity. Proc Natl Acad Sci U S A 106(29):12162–12167

    Article  CAS  Google Scholar 

  13. Aravanis AM et al (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiber optic and optogenetic technology. J Neural Eng 4(3):S143–S156

    Article  Google Scholar 

  14. Kravitz AV et al (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466(7306):622–626

    Article  CAS  Google Scholar 

  15. Tonnesen J et al (2011) Functional integration of grafted neural stem cell-derived dopaminergic neurons monitored by optogenetics in an in vitro Parkinson model. PLoS One 6(3):e17560

    Article  CAS  Google Scholar 

  16. G N et al (2013) Channelrhodopsins: visual regeneration and neural activation by a light switch. N Biotechnol 30(5):461–474

    Article  CAS  Google Scholar 

  17. Entcheva E (2013) Cardiac optogenetics. Am J Physiol Heart Circ Physiol 304(9):H1179–H1191

    Article  CAS  Google Scholar 

  18. Bruegmann T et al (2010) Optogenetic control of heart muscle in vitro and in vivo. Nat Methods 7(11):897–900

    Article  CAS  Google Scholar 

  19. Abilez OJ et al (2011) Multiscale computational models for optogenetic control of cardiac function. Biophys J 101(6):1326–1334

    Article  CAS  Google Scholar 

  20. Jia Z et al (2011) Stimulating cardiac muscle by light: cardiac optogenetics by cell delivery. Circ Arrhythm Electrophysiol 4(5):753–760

    Article  Google Scholar 

  21. Kleinlogel S et al (2011) A gene-fusion strategy for stoichiometric and co-localized expression of light-gated membrane proteins. Nat Methods 8(12):1083–1088

    Article  CAS  Google Scholar 

  22. Mattis J et al (2012) Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 9(2):159–172

    Article  CAS  Google Scholar 

  23. Yizhar O et al (2011) Optogenetics in neural systems. Neuron 71(1):9–34

    Article  CAS  Google Scholar 

  24. Lin JY (2012) Optogenetic excitation of neurons with channelrhodopsins: light instrumentation, expression systems, and channelrhodopsin variants. Prog Brain Res 196:29–47

    Article  CAS  Google Scholar 

  25. Herron TJ et al (2012) Optical imaging of voltage and calcium in cardiac cells & tissues. Circ Res 110(4):609–623

    Article  CAS  Google Scholar 

  26. Lam ML et al (2002) The 21-day postnatal rat ventricular cardiac muscle cell in culture as an experimental model to study adult cardiomyocyte gene expression. Mol Cell Biochem 229(1–2):51–62

    Article  CAS  Google Scholar 

  27. Entcheva E, Bien H (2006) Macroscopic optical mapping of excitation in cardiac cell networks with ultra-high spatiotemporal resolution. Prog Biophys Mol Biol 92(2):232–257

    Article  Google Scholar 

  28. Arrenberg AB et al (2010) Optogenetic control of cardiac function. Science 330(6006):971–974

    Article  CAS  Google Scholar 

  29. Papagiakoumou E et al (2010) Scanless two-photon excitation of channelrhodopsin-2. Nat Methods 7(10):848–854

    Article  CAS  Google Scholar 

  30. Ullrich S et al (2013) Degradation of channelopsin-2 in the absence of retinal and degradation resistance in certain mutants. Biol Chem 394(2):271–280

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Heart, Lung, and Blood Institute Grant R01-HL-111649 (E.E.), an Institutional National Service Research Award T32-DK07521 (C.M.A.), and partially a NYSTEM grant C026716 to the Stony Brook Stem Cell Center.

We would also like to thank Varsha Sitaraman, PhD; Jinzhu Yu, BS; and Kay Chen, BS, for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Entcheva Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ambrosi, C.M., Entcheva, E. (2014). Optogenetic Control of Cardiomyocytes via Viral Delivery. In: Radisic, M., Black III, L. (eds) Cardiac Tissue Engineering. Methods in Molecular Biology, vol 1181. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1047-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1047-2_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1046-5

  • Online ISBN: 978-1-4939-1047-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics