Skip to main content

Preparation of Acellular Myocardial Scaffolds with Well-Preserved Cardiomyocyte Lacunae, and Method for Applying Mechanical and Electrical Simulation to Tissue Construct

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1181))

Abstract

Cardiac tissue engineering/regeneration using decellularized myocardium has attracted great research attention due to its potential benefit for myocardial infarction (MI) treatment. Here we describe an optimal decellularization protocol to generate 3D porcine myocardial scaffolds with well-preserved cardiomyocyte lacunae and a multi-stimulation bioreactor that is able to provide coordinated mechanical and electrical stimulation for facilitating cardiac construct development.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rosamond W, Flegal K, Friday G, Furie K, Go A, Greenlund K et al (2007) Heart disease and stroke statistics—2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 115:e69–e171

    Article  Google Scholar 

  2. Sharma R, Raghubir R (2007) Stem cell therapy: a hope for dying hearts. Stem Cells Dev 16:517–536

    Article  CAS  Google Scholar 

  3. Grauss RW, Winter EM, van Tuyn J, Pijnappels DA, Steijn RV, Hogers B et al (2007) Mesenchymal stem cells from ischemic heart disease patients improve left ventricular function after acute myocardial infarction. Am J Physiol Heart Circ Physiol 293:H2438–H2447

    Article  CAS  Google Scholar 

  4. Strauer BE, Kornowski R (2003) Stem cell therapy in perspective. Circulation 107:929–934

    Article  Google Scholar 

  5. Langer R, Vacanti J (1993) Tissue engineering. Science 260:920–926

    Article  CAS  Google Scholar 

  6. Zimmermann WH, Melnychenko I, Eschenhagen T (2004) Engineered heart tissue for regeneration of diseased hearts. Biomaterials 25: 1639–1647

    Article  CAS  Google Scholar 

  7. Thompson RB, Emani SM, Davis BH, van den Bos EJ, Morimoto Y, Craig D et al (2003) Comparison of intracardiac cell transplantation: autologous skeletal myoblasts versus bone marrow cells. Circulation 108(Suppl 1): II264–II271

    Google Scholar 

  8. Bursac N, Papadaki M, Cohen RJ, Schoen FJ, Eisenberg SR, Carrier R et al (1999) Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am J Physiol 277:H433–H444

    CAS  Google Scholar 

  9. Fujimoto KL, Tobita K, Merryman WD, Guan J, Momoi N, Stolz DB et al (2007) An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction. J Am Coll Cardiol 49:2292–2300

    Article  CAS  Google Scholar 

  10. Fujimoto KL, Guan J, Oshima H, Sakai T, Wagner WR (2007) In vivo evaluation of a porous, elastic, biodegradable patch for reconstructive cardiac procedures. Ann Thorac Surg 83:648–654

    Article  Google Scholar 

  11. Li W-J, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613–621

    Article  CAS  Google Scholar 

  12. Smith IO, Liu XH, Smith LA, Ma PX (2009) Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:226–236

    Article  CAS  Google Scholar 

  13. Ozawa T, Mickle DA, Weisel RD, Koyama N, Wong H, Ozawa S et al (2002) Histologic changes of nonbiodegradable and biodegradable biomaterials used to repair right ventricular heart defects in rats. J Thorac Cardiovasc Surg 124:1157–1164

    Article  Google Scholar 

  14. Ozawa T, Mickle DA, Weisel RD, Koyama N, Ozawa S, Li RK (2002) Optimal biomaterial for creation of autologous cardiac grafts. Circulation 106:I176–I182

    Google Scholar 

  15. Grad S, Zhou L, Gogolewski S, Alini M (2003) Chondrocytes seeded onto poly (L/DL-lactide) 80 %/20 % porous scaffolds: a biochemical evaluation. J Biomed Mater Res A 66:571–579

    Article  Google Scholar 

  16. Weber B, Emmert MY, Schoenauer R, Brokopp C, Baumgartner L, Hoerstrup SP (2011) Tissue engineering on matrix: future of autologous tissue replacement. Semin Immunopathol 33:307–315

    Article  CAS  Google Scholar 

  17. Badylak SF, Record R, Lindberg K, Hodde J, Park K (1998) Small intestinal submucosa: a substrate for in vitro cell growth. J Biomater Sci Polym Ed 9:863–878

    Article  CAS  Google Scholar 

  18. Badylak SF, Tullius R, Kokini K, Shelbourne KD, Klootwyk T, Voytik SL et al (1995) The use of xenogeneic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model. J Biomed Mater Res 29:977–985

    Article  CAS  Google Scholar 

  19. Voytik-Harbin SL, Brightman AO, Kraine MR, Waisner B, Badylak SF (1997) Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem 67:478–491

    Article  CAS  Google Scholar 

  20. Baptista PM, Vyas D, Soker S (2012) Liver regeneration and bioengineering—the emergence of whole organ scaffolds. In: Baptista PM (ed) Liver regeneration. InTech, Rijeka

    Chapter  Google Scholar 

  21. Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13: 27–53

    Article  CAS  Google Scholar 

  22. Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32:3233–3243

    Article  CAS  Google Scholar 

  23. Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27:3675–3683

    CAS  Google Scholar 

  24. Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17 (Suppl 4):467–479

    Article  CAS  Google Scholar 

  25. Badylak SF (2004) Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol 12:367–377

    Article  CAS  Google Scholar 

  26. Badylak SF, Freytes DO, Gilbert TW (2009) Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 5:1–13

    Article  CAS  Google Scholar 

  27. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI et al (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14: 213–221

    Article  CAS  Google Scholar 

  28. Wainwright JM, Czajka CA, Patel UB, Freytes DO, Tobita K, Gilbert TW et al (2010) Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng Part C Methods 16:525–532

    Article  CAS  Google Scholar 

  29. Vunjak-Novakovic G, Tandon N, Godier A, Maidhof R, Marsano A, Martens TP et al (2010) Challenges in cardiac tissue engineering. Tissue Eng Part B Rev 16:169–187

    Article  Google Scholar 

  30. Steinhauser ML, Lee RT (2011) Regeneration of the heart. EMBO Mol Med 3:701–712

    Article  CAS  Google Scholar 

  31. Wang B, Borazjani A, Tahai M, Curry AL, Simionescu DT, Guan J et al (2010) Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. J Biomed Mater Res A 94: 1100–1110

    Google Scholar 

  32. Wang B, Tedder ME, Perez CE, Wang G, de Jongh Curry AL, To F et al (2012) Structural and biomechanical characterizations of porcine myocardial extracellular matrix. J Mater Sci Mater Med 23:1835–1847

    Article  CAS  Google Scholar 

  33. Wang B, Wang G, To F, Butler JR, Claude A, McLaughlin RM et al (2013) Myocardial scaffold-based cardiac tissue engineering: application of coordinated mechanical and electrical stimulations. Langmuir 29(35):11109–11117

    Article  CAS  Google Scholar 

  34. Rakusan K, Flanagan MF, Geva T, Southern J, Van Praagh R (1992) Morphometry of human coronary capillaries during normal growth and the effect of age in left ventricular pressure-overload hypertrophy. Circulation 86:38–46

    Article  CAS  Google Scholar 

  35. Korecky B, Hai CM, Rakusan K (1982) Functional capillary density in normal and transplanted rat hearts. Can J Physiol Pharmacol 60:23–32

    Article  CAS  Google Scholar 

  36. Zhang S, Crow JA, Yang X, Chen J, Borazjani A, Mullins KB et al (2010) The correlation of 3D DT-MRI fiber disruption with structural and mechanical degeneration in porcine myocardium. Ann Biomed Eng 38:3084–3095

    Article  Google Scholar 

  37. Weber KT (1989) Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol 13:1637–1652

    Article  CAS  Google Scholar 

  38. Holmes JW, Borg TK, Covell JW (2005) Structure and mechanics of healing myocardial infarcts. Annu Rev Biomed Eng 7:223–253

    Article  CAS  Google Scholar 

  39. Humphery JD (2002) Cardiovascular solid mechanics. Springer, New York

    Book  Google Scholar 

  40. Jackson DW, Grood ES, Cohn BT, Arnoczky SP, Simon TM, Cummings JF (1991) The effects of in situ freezing on the anterior cruciate ligament. An experimental study in goats. J Bone Joint Surg Am 73:201–213

    CAS  Google Scholar 

  41. Roberts TS, Drez D Jr, McCarthy W, Paine R (1991) Anterior cruciate ligament reconstruction using freeze-dried, ethylene oxide-sterilized, bone-patellar tendon-bone allografts. Two year results in thirty-six patients. Am J Sports Med 19:35–41

    Article  CAS  Google Scholar 

  42. Chiu CP, Blau HM (1985) 5-Azacytidine permits gene activation in a previously noninducible cell type. Cell 40:417–424

    Article  CAS  Google Scholar 

  43. Tomita Y, Makino S, Hakuno D, Hattan N, Kimura K, Miyoshi S et al (2007) Application of mesenchymal stem cell-derived cardiomyocytes as bio-pacemakers: current status and problems to be solved. Med Biol Eng Comput 45:209–220

    Article  Google Scholar 

  44. Fukuda K (2003) Regeneration of cardiomyocytes from bone marrow: use of mesenchymal stem cell for cardiovascular tissue engineering. Cytotechnology 41:165–175

    Article  CAS  Google Scholar 

  45. Carrier RL, Papadaki M, Rupnick M, Schoen FJ, Bursac N, Langer R et al (1999) Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng 64:580–589

    Article  CAS  Google Scholar 

  46. Birla RK, Borschel GH, Dennis RG (2005) In vivo conditioning of tissue-engineered heart muscle improves contractile performance. Artif Organs 29:866–875

    Article  Google Scholar 

  47. Birla RK, Borschel GH, Dennis RG, Brown DL (2005) Myocardial engineering in vivo: formation and characterization of contractile, vascularized three-dimensional cardiac tissue. Tissue Eng 11:803–813

    Article  CAS  Google Scholar 

  48. Borschel GH, Dow DE, Dennis RG, Brown DL (2006) Tissue-engineered axially vascularized contractile skeletal muscle. Plast Reconstr Surg 117:2235–2242

    Article  CAS  Google Scholar 

  49. Vouyouka AG, Powell RJ, Ricotta J, Chen H, Dudrick DJ, Sawmiller CJ et al (1998) Ambient pulsatile pressure modulates endothelial cell proliferation. J Mol Cell Cardiol 30: 609–615

    Article  CAS  Google Scholar 

  50. Rubbens MP, Driessen-Mol A, Boerboom RA, Koppert MM, van Assen HC, TerHaar Romeny BM et al (2009) Quantification of the temporal evolution of collagen orientation in mechanically conditioned engineered cardiovascular tissues. Ann Biomed Eng 37:1263–1272

    Article  Google Scholar 

  51. Akhyari P, Fedak PW, Weisel RD, Lee TY, Verma S, Mickle DA et al (2002) Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation 106:I137–I142

    Article  Google Scholar 

  52. Zimmermann WH, Melnychenko I, Wasmeier G, Didie M, Naito H, Nixdorff U et al (2006) Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12:452–458

    Article  CAS  Google Scholar 

  53. Fink C, Ergun S, Kralisch D, Remmers U, Weil J, Eschenhagen T (2000) Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J 14: 669–679

    CAS  Google Scholar 

  54. Wikswo JP Jr, Lin SF, Abbas RA (1995) Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. Biophys J 69:2195–2210

    Article  CAS  Google Scholar 

  55. McDonough PM, Glembotski CC (1992) Induction of atrial natriuretic factor and myosin light chain-2 gene expression in cultured ventricular myocytes by electrical stimulation of contraction. J Biol Chem 267: 11665–11668

    CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by NIH National Heart, Lung, and Blood Institute grant HL097321. The authors also would like to acknowledge the support from American Heart Association (13GRNT17150041) and MAFES Strategic Research Initiative (CRESS MIS-361020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liao Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wang, B., Williams, L.N., de Jongh Curry, A.L., Liao, J. (2014). Preparation of Acellular Myocardial Scaffolds with Well-Preserved Cardiomyocyte Lacunae, and Method for Applying Mechanical and Electrical Simulation to Tissue Construct. In: Radisic, M., Black III, L. (eds) Cardiac Tissue Engineering. Methods in Molecular Biology, vol 1181. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1047-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1047-2_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1046-5

  • Online ISBN: 978-1-4939-1047-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics